Автоматизация контроля герметичности продувочного вентиля газового коллектора котельных установок. Контроль герметичности. Газовые методы Контроль герметичности клапанов газогорелочных устройств

Автоматизация контроля герметичности продувочного вентиля газового коллектора котельных установок. Контроль герметичности. Газовые методы Контроль герметичности клапанов газогорелочных устройств

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru

АННОТАЦИЯ

В магистерской диссертации проведена разработка и исследование автоматизированных систем испытания на герметичность манометрическим методом запорной и распределительной газовой аппаратуры.

Проведен обзор и анализ методов контроля герметичности запорной и распределительной газовой аппаратуры

Рассмотрены основные этапы проектирования устройств контроля герметичности запорной и распределительной газовой арматуры. Произведено моделирование манометрического метода контроля герметичности газовой запорной и распределительной аппаратуры.

Разработана конструкция стенда по проведению испытаний на герметичность запорной и распределительной арматуры.

Пояснительная записка содержит 100 страниц, 35 рисунков, 3 таблицы, 3 приложения, 43 наименования библиографии.

Графическая часть выполнена в программе Power Point и представлена на 14 слайдах.

Введение

ГЛАВА 2. Основные этапы проектирования устройств контроля герметичности запорной и распределительной газовой арматуры

2.1 Алгоритм проектирования автоматизированного оборудования

для контроля герметичности

2.2 Схемы и принцип работы устройств по контролю герметичности манометрическим методом

2.3 Моделирование манометрического метода контроля герметичности газовой запорной и распределительной арматуры

ГЛАВА 3. Разработка конструкции стенда по проведению испытаний на герметичность запорной и распределительной арматуры

3.1 Компоновка и техническая характеристика стенда

3.2 Принцип работы стенда по испытанию на герметичность газовой запорной и распределительной арматуры

3.2.1 Предварительная продувка

3.2.2 Зажим - фиксация изделия

3.2.2.1 Расчет схемы зажима, фиксации и уплотнения крана

3.2.2.2 Разработка блока зажима, фиксации и уплотнения крана

3.3.3 Вращение

3.2.4. Позиционирование

3.2.5 Испытание на герметичность

3.2.6 Регулирование

3.2.7 Разжим - расфиксация

3.2.8 Управление и индикация

3.3 Разработка автоматизированного технологического процесса контроля герметичности

Заключение

Список использованной литературы

ВВЕДЕНИЕ

При изготовлении аппаратуры (запорная арматура, пневмоклапаны, краны и т.п.), в которой рабочей средой является сжатый воздух или другой газ, существующими стандартами и техническими условиями регламентируется стопроцентный контроль параметра «герметичность». Это объясняется тем, что основным узлом - рабочим элементом такой аппаратуры является подвижная трудно уплотняемая пара: золотник- корпус; сопло - заслонка; шаровой, седельчатый и конусный клапаны, а также неподвижные герметизирующие элементы, которые часто работают в условиях высокого давления. Негерметичность этой аппаратуры, т.е. наличие утечки, превышающей допустимую, может привести к серьезным авариям, поломкам и другим отрицательным результатам в работе сложного дорогостоящего оборудования, в котором она применяется.

Контроль герметичности конструкций применяют в разнообразных отраслях науки и техники. Широкое использование этого вида контроля обусловило развитие разнообразных методов и средств контроля, обладающих различной чувствительностью и областью рационального использования.

Можно считать, что одна из наиболее актуальных проблем настоящего времени - повышение чувствительности контроля - в ряде случаев принципиально решена. Создана течеискательная аппаратура, позволяющая выявлять неплотности, сравнимые с межмолекулярным расстоянием, и регистрировать течи, граничащие с проницаемостью материалов.

Актуальной остается проблема повышения производительности и надежности течеискательной аппаратуры, ее упрощения и расширения эксплуатационных возможностей. При этом надо учитывать, что надежность аппаратуры еще не определяет однозначно надежность испытаний. Существенными оказываются качество подготовки испытываемых объектов, правильный выбор аппаратуры, режимов испытаний и состояний окружающей среды. Это, в свою очередь, выдвигает необходимость решения задач методического и технологического характера. В частности, возникают проблемы разработки рациональных методик контроля объектов с использованием нескольких способов течеискания, создания промышленного вспомогательного оборудования, позволяющего экономически выгодно использовать в производственных условиях хорошо известные методы контроля герметичности.

Большое значение приобретают вопросы механизации и автоматизации при течеискании. В лучших образцах течеискательной аппаратуры процесс контроля почти полностью автоматизирован. Однако еще мало создано специальных устройств, поточных линий и конвейерных установок, в которых механизированы и автоматизированы процессы подготовки, заполнения или нанесения индикаторных веществ, контроля и объективной регистрации состояния герметичности контролируемого изделия.

Целью магистерской диссертации является разработка и исследование автоматизированных устройств и систем управления испытанием на герметичность запорной и распределительной газовой аппаратуры.

Задачи исследования:

Анализ известных методов испытания на герметичность запорной и распределительной газовой аппаратуры.

Исследование систем, используемых для проведения испытаний на герметичность запорной и распределительной газовой аппаратуры.

Моделирование параметров датчика давления, используемого в испытании на герметичность запорной и распределительной газовой аппаратуры.

Разработка стенда для проведения испытаний на герметичность запорной и распределительной газовой аппаратуры.

запорная арматура герметичность

ГЛАВА 1. Обзор и анализ методов контроля герметичности запорной и распределительной газовой аппаратуры

1.1 Основные термины и определения

В соответствии с требованиями и рекомендациями, приведенными в научно-технической литературе и нормативной документации для изделий и конструкций, работающих или контролируемых под избыточным давлением газа, в настоящем исследовании приняты следующие термины и определения.

Неплотность - сквозной дефект в стенке изделия или в местах соединений его элементов, через которые может пройти газ.

Поток через неплотность - количество газа в объемных единицах, проходящее через неплотность в единицу времени при действующем перепаде давления. Поток через неплотность в большинстве случаев определяется по формуле

где V - внутренний объем испытуемого изделия с одной неплотностью;

Изменение величины давления газа (перепад давления);

t - время испытания.

Течь - поток через неплотность при нормированном перепаде давления, за который принимают величину равную физической атмосфере (10,1МПа).

Утечка - суммарный поток через неплотность изделия или конструкции: . Единицы измерения - , . Допускается выражать утечку в единицах объемного расхода - , .

Герметичность - способность или свойство изделия не пропускать газ через стенки и места соединений его элементов. Герметичность Г конструкций, работающих под избыточным давлением, - величина, пропорциональная объему и обратно пропорциональная утечке, что соответствует зависимости

где - суммарный внутренний объем изделия;

Суммарная утечка.

Физический смысл герметичности - это время, необходимое для изменения давления во внутреннем объеме изделия на единицу - с/Па.

Контроль герметичности - для изделий, работающих под давлением - это вид неразрушающего испытания, состоящий в измерении или оценке суммарной утечки пробного вещества проникающего через неплотности, для сравнения с допустимой величиной утечки. Испытания на герметичность проводят с целью определения степени негерметичности изделий, а также выявления отдельных течей.

Степень негерметичности - количественная характеристика герметичности. Она характеризуется потоком газа, расходом, падением давления за единицу времени и другими подобными величинами, приведенными к рабочим условиям.

Рабочее вещество (рабочая среда) - газ которым заполняют изделие в процессе эксплуатации.

Пробное вещество (индикаторная среда, индикаторное вещество) - газ или другое вещество, предназначенные для проникновения через неплотности изделия во время испытания с последующей его регистрацией визуальными, химическими или инструментальными методами. Пробным веществом может быть один газ или смесь газов, например, сжатый воздух.

Чувствительность контроля герметичности - наименьшая утечка рабочей среды, которая может быть зарегистрирована в процессе испытания изделия с помощью пробного вещества.

Контрольная (калиброванная) течь - устройство, с помощью которого получают постоянный по времени и известный по величине поток пробного вещества.

Термины и определения, связанные непосредственно с исследованием, рассмотрены и объяснены в процессе изложения соответствующего материала.

1.2 Особенности контроля герметичности распределительной и запорной газовой арматуры

Под газовой арматурой, рассматриваемой в настоящей работе, понимаются устройства, предназначенные для применения в различных системах, в которых рабочей средой является газ или смесь газов под давлением (например, природный газ, воздух и т. п.), для осуществления функций отсечки, распределения и др.

К газовой арматуре относятся: клапаны, распределители, вентили и другие средства промышленной пневмоавтоматики высокого (до 1,0 МПа) и среднего давления (до 0,2…0,25 МПа), запорные краны бытовых газовых плит, работающие на низком давлении (до 3000 Па).

Испытанию на герметичность подвергаются как готовые изделия, так и их составные элементы, отдельные узлы и т. п. В зависимости от назначения изделий, условий, в которых они эксплуатируются и конструктивных особенностей к ним предъявляются различные требования в отношении их герметичности.

Под герметичностью газовой арматуры понимается ее способность не пропускать через стенки, соединения и уплотнения рабочую среду, подводимую под избыточным давлением. При этом допускается определенная величина утечки, превышение которой соответствует негерметичности изделия. Наличие утечки объясняется тем, что основным узлом - рабочим элементом таких устройств является подвижная, трудно уплотняемая пара: золотник-корпус, сопло-заслонка, шаровой, конусный или седельчатый клапаны и т. п. Кроме того, конструкция устройства, как правило, содержит неподвижные уплотняющие элементы: кольца, манжеты, сальники, смазки, дефекты которых также могут быть причиной утечки. Негерметичность газовой арматуры, т. е. наличие утечки рабочей среды превышающей допустимую, может привести к серьезным авариям, поломкам и другим отрицательным результатам в работе оборудования, в котором она применяется.

Запорный кран (рис. 1.1) является важным узлом бытовых газовых плит. Он предназначен для регулирования подачи природного газа к горелкам плиты и его отсечки по окончании работы. Конструктивно кран представляет собой устройство с поворотным клапанным элементом 1, смонтированным в разъемном корпусе 2, в котором имеются каналы для прохода газа. Места сопряжения деталей крана нуждаются в уплотнении для обеспечения максимально возможной его герметичности. Уплотнение осуществляется специальной графитовой смазкой - герметиком, изготавливаемой в соответствии с ТУ 301-04-003-9. Некачественное уплотнение приводит при эксплуатации плиты к утечке природного газа, что в условиях ограниченного пространства бытовых помещений взрыво- и пожароопасно, кроме того, нарушается экология (среда обитания человека).

В соответствии с ГОСТом установлены следующие требования при проведении испытаний на герметичность запорного крана. Испытания проводятся сжатым воздухом под давлением (15000±20) Па, так как более высокое давление может нарушить уплотняющую смазку. Утечка воздуха не должна превышать 70 см3/ч.

1.3 Принципы проектирования операций пневматических и гидравлических испытаний

Гидравлическое (пневматическое) испытания как основная форма контроля изделий запорной арматуры представляют собой экспериментальное определение количественных и качественных показателей свойств изделия как результата воздействия на него при его функционировании, а также при моделировании объекта .

Основой для проектирования технологических операций является их классификация, которая создает условия для организации специализированных рабочих мест, участков и подразделений, обеспечивает возможность механизации учета, поиска и хранения информации. На рисунке 1.2 представлена классификация пневматических и гидравлических испытаний по контролируемой характеристике (первая ступень) и по методу испытаний (вторая ступень). Границы между классификационными группировками, представленными на рисунке 1.2, не являются раз и навсегда установленными. В зависимости от задач, которые ставит перед собой инженер, проектирующий испытательную операцию, они могут совмещаться. Так, контроль герметичности люминесцентным методом и испытания на прочность целесообразно проводить на одном и том же оборудовании. В тех случаях, когда это позволяет техника безопасности, гидравлические испытания на герметичность могут быть заменены пневматическими.

Выбор метода испытаний определяется стоимостью их проведения, требуемой точностью измерения, размером экономического ущерба от пропущенного брака и другими факторами.

Рисунок 1.2 - Классификация пневматических и гидравлических

испытаний по контролируемой характеристике

Цели испытаний различны на различных этапах проектирования и изготовления запорной арматуры. К основным целям испытаний можно отнести:

а) выбор оптимальных конструктивно-технологических решений при создании новых изделий;

б) доводку изделий до необходимого уровня качества;

в) объективную оценку качества изделий при их постановке на производство и в процессе производства;

г) гарантирование качества изделий при международном товарообмене.

Испытания служат эффективным средством повышения качества, так как позволяют выявить:

Недостатки конструкции и технологии изготовления запорной арматуры, приводящие к срыву выполнения заданных функций в условиях эксплуатации;

Отклонения от выбранной конструкции или принятой технологии;

Скрытые дефекты материалов или элементов конструкции, не поддающиеся обнаружению существующими методами технического контроля;

Резервы повышения качества и надежности разрабатываемого конструктивно-технологического варианта изделия.

По результатам испытаний изделий в производстве разработчик устанавливает причины снижения качества.

Гидравлическому испытанию подлежат вся запорная арматура, после ее изготовления.

Изделия, изготовление которых заканчивается на месте установки, транспортируемые на место монтажа частями, подвергаются гидравлическому испытанию на месте монтажа.

Запорная арматура, имеющая защитное покрытие или изоляцию, подвергаются гидравлическому испытанию до наложения покрытия или изоляции.

Запорная арматура, имеющая наружный кожух, подвергаются гидравлическому испытанию до установки кожуха.

Гидравлическое испытание запорной арматуры, за исключением литых, должно проводиться пробным давлением Рпр, МПа, определяемым по формуле:

где Р - проектное давление запорной арматуры, МПа (кгс/см2);

[д20],[ дt] - допускаемые напряжения для материала запорной арматуры или его элементов соответственно при 200 С и проектной температуре, МПа (кгс/см2).

Гидравлическое испытание литых деталей должно проводиться пробным давлением Рпр, МПа, определяемым по формуле:

Испытание отливок разрешается проводить после сборки и сварки в собранном узле или готовом изделии пробным давлением, принятым для изделий запорной арматуры, при условии 100% контроля отливок неразрушающими методами.

При заполнении испытуемого изделия водой воздух из него должен быть удален полностью.

Для гидравлического испытания запорной арматуры должна применяться вода с температурой не ниже пяти градусов Цельсия и не выше 400 С, если в технических условиях не указано конкретное значение температуры, допускаемой по условию предотвращения хрупкого разрушения.

По согласованию с разработчиком испытаний вместо воды может быть использована другая жидкость.

Давление в испытываемом изделии следует повышать плавно. Скорость подъема давления должна быть указана: для испытания изделия в организации-изготовителе - в технической документации, для испытания сосуда в процессе работы - в инструкции по монтажу и эксплуатации.

Давление при испытании должно контролироваться двумя манометрами одного типа, предела измерения, одинаковых классов точности, цены деления.

Время выдержки испытуемого изделия под пробным давлением устанавливается разработчиком проекта.

После выдержки под пробным давлением давление снижается до проектного, при котором производят осмотр наружной поверхности испытуемого изделия, всех его разъемных и сварных соединений.

Обстукивание стенок корпуса, сварных и разъемных соединений испытуемого изделия во время испытаний не допускается.

Изделие считается выдержавшим гидравлическое испытание, если не обнаружено:

Течи, трещин, слезок, потения в сварных соединениях и на основном металле;

Течи в разъемных соединениях;

Видимых остаточных деформаций, падения давления по манометру.

Испытуемые изделия, в которых при испытании выявлены дефекты, после их устранения подвергаются повторным гидравлическим испытаниям пробным давлением, установленным настоящими правилами.

Гидравлическое испытание, проводимое в организации-изготовителе, должно проводиться на специальном испытательном стенде, имеющем соответствующее ограждение и удовлетворяющем требованиям безопасности и инструкции по проведению гидроиспытаний в соответствии с нормативной документацией, утвержденной в установленном порядке.

Гидравлическое испытание при изготовлении изделий запорной арматуры допускается заменять пневматическим при условии контроля этого изделия методом, согласованным с Госгортехнадзором России.

Пневматические испытания должны проводиться по инструкции, предусматривающей необходимые меры безопасности и утвержденной в установленном порядке .

Пневматическое испытание изделий запорной арматуры проводится сжатым воздухом или инертным газом.

Величина пробного давления принимается равной величине пробного гидравлического давления. Время выдержки сосуда под пробным давлением устанавливается разработчиком проекта. Затем давление в испытываемом изделии должно быть снижено до проектного и произведен осмотр изделия с проверкой герметичности его швов и разъемных соединений мыльным раствором или другим способом.

Значение пробного давления и результаты испытаний заносятся в паспорт изделия лицом, проводившим эти испытания.

1.4 Методы и способы контроля герметичности

Метод контроля герметичности выбирается исходя из конструктивно-технологической характеристики изделия, технико-экономических параметров и возможностей производства .

Чувствительность метода выбирают такую, чтобы можно было обнаружить утечки, величина которых примерно на один порядок меньше допускаемых. Численное значение требований к герметичности служит исходным параметром для выбора рациональной схемы и технических режимов контроля герметичности.

Классификация способов и средств контроля герметичности представлена в виде таблицы 1.1 .

К первой группе отнесены все способы и средства определяющие утечку через несплошность созданием в контролируемом объеме избыточного давления рабочей опрессовочной среды с содержанием и без содержания пробного газа.

Вторая группа объединяет многочисленные способы и устройства определяющие герметичность непосредственно в контролируемом объекте или в вакуумной камере, в которую помещается испытуемое изделие, регистрацией изменения предварительно созданного, вполне определенного разряжения, происходящего из-за проникновения в разряженный объем пробного газа (вторая группа).

Эти группы включают в себя две подгруппы. В первую включены все способы и средства, в которых в качестве рабочей опрессовочной среды используют чистый воздух, воздух в смеси с пробным газом или воздух в смеси с различными радиоактивными изотопами.

Во вторую - способы и устройства, в которых для определения места расположения несплошности используют жидкий компонент, в том числе и сжиженный газ. Дальнейшее деление осуществляют в зависимости от технологии определения несплошности.

Таблица 1.1 Классификация способов и средств контроля герметичности

Первая группа

Газированная гидросмесь

Без использования электроусройств

С использованием электроустройств

Мыльная эмульсия; эластичные пленки

По показаниям

фотоэлектронных

датчиков

Отпотевание жидкости

Индикаторный

Оптико-аккустический

Погружение в воду и наблюдение за пузырьками

По изменению теплопроводности при контакте с пробным газом

Изменение окраски индикаторной массы

Фотоэлектричес-

люминесцентный

Изменение цвета индикаторной массы

Изменение формы

эластичной пластмассы

Ультрафиолетовый истрочник

Вторая группа

Газовоздушная смесь с меченным газом

Газированная гидросмесь

Без использования электроусройств

С использованием электроустройств

Без использования электроусройств

С использованием электроустройств

Кипение жидкости (индикаторных)

Электронные датчики

чувствительные к меченному газу

Инфракрасный

оптикоаккустический

Регистрация паров жидкости

Измерение перепада давления

инструментальным способом

По показаниям счетчика типа Мюллера-Гейгера

Дифференциальный манометр

Показания счетчика Мюллера-Гейгера

Бароаквариум, эластичные массы

Массспактрометрический датчик

Ионизационный манометр

Пламенно-ионизационный датчик

Таблица 1.2 - Пневматические способы и средства контроля герметичности

Классификация средств контроля герметичности с использованием избыточного давления газовоздушных смесей

Классифика-

Газовоздушные смеси

Избыточное

давление

Атмосферное давление

С фреоном

С аммиаком

С закисью азота

С аргоном

С радио- изотопами

По технологии подготовки изделия к контролю

а)Нанесение

мыльной эмульсии на

контролируемую поверхность

б)Погружение изделия в жидкость

Погружение контролируемого изделия в нагретую жидкость; вакуумирование объема над жидкостью

Создание избыточного давления газовоздушной смеси в контролируемом

Непрерывный

отбор газо-воздушной

смеси от контролируемой поверхности

Нанесение на

Контролируемую поверхность

индикаторной

Непрерывный отбор поверхности

По способу индикации и регистрации течи

Визуально (по образованию воздушных пузырьков)

По показаниям электронного датчика,чувствительного к пробному газу

Визуально (по измене-нию цвета каторной массы)

По показаниям электронных датчиков чувствительности к пробным газам

По чувстви-тельности,лхмкм/с

1·10-2 - 1·10-3

Область применения

Неответственные детали и агрегаты

Мелкие изделия

Топливные отсеки, баки системы

Топливные баки, отсеки всех систем,

изготовленные из нержавеющей стали

Топливные отсеки всех систем

Топливные отсеки всех систем

применяются

Автоматичес

кий контроль

малогабаритных изделий

По состоянию разработки и внедрения в промышленности

Внедрено на всех серийных заводах

Внедрено для проверки замкнутых объемов

Начато внедрение на серийных заводах;

Используется на многих серийных и опытных заводах

Течеиска-тель серийного

изготовления,применяется мало

Изготовлена опытная партия течеискателей

Таблица 1.3 - Классификация средств контроля герметичности с использованием избыточного

давления различных жидкостей.

Классификация

Вода с хромпиком

Керосин с люминофором

Гидросмеси с люминофором

Обессоленная вода с люнофором

Спирт с люминофором

Жидкость газированная с закисью азота

Жидкость газированная пробным газом для газолюминисценции

По технологии подготовки изделия к проверке герметичности

Подготовка контролируемой поверхности в соответствии с ГОСТ 1.41182 - 71. Создание избыточного давления в проверяемом объекте

Покрытие меловой обмазкой

Облучение контролируемой поверхности ультрафиолетовом светом

Отбор газовоздушных проб

Облучение

Контролируемой поверхности

ультрафиолетом

По способу индикации

Визуально (по изменению окраски мелового покрытия)

Визуально (по свечению люминофора в несплошности)

С помощью

акустического датчика

течеискателя

Визуально по свечению индикатора в местах выхода жидкости или газа через несплошности

По чувствительности,

1·10-3 - 1·10-4

Область применения

Неответствен-

ные агрегат

На изделиях, где допустимо использование других жидкостей

Для гидросмесей

Для топливных

крупногабаритных изделий при

одновременной

проверке

прочности

Для одновременной проверки прочности и герметичности топливных баков, отсеков и систем

По состоянию разработки и внедрении в промышленности

Используется на заводах отрасли

Проведено опытное внедрение

Не внедрено

Проведено

внедрение

Не внедренно

Намечено внедрение на заводах отрасли

В стадии разработки индикаторных масс

Для контроля герметичности бытовой газовой техники наиболее перспективной является группа компрессионных методов. Компрессионные методы контроля герметичности основаны на регистрации параметров индикаторной жидкости и газов, проникающих под давлением в сквозные дефекты контролируемого объекта.

При гидростатическом методе в объект контроля заливают жидкость и создают избыточное давление. После определенной выдержки производят осмотр или наложение фильтровальной бумаги на поверхность проверяемого соединения. Герметичность объекта оценивается в зависимости от наличия или отсутствия капель жидкости на контролируемой поверхности или пятен на фильтровальной бумаге, используемой в качестве индикатора. Величина утечки Y, МПа/с определяется количеством вытекшей жидкости и временем ее сбора по формуле:

где VЖ - объем вытекшей жидкости, м3;

Время наблюдения, с.

Для удобства индикации утечек в ряде случаев на наружную поверхность контролируемого объекта предварительно наносят меловую обмазку толщиной 40 - 60 мкм. Для обмазки готовят сметанообразный водный раствор мела и наносят его с помощью жесткой волосяной кисти или любым другим способом тонким равномерным слоем на поверхность и высушивают. Ориентировочно на один м2 проверяемой поверхности необходимо 0,3 л меловой обмазки.

На фильтровальной бумаге и меловом покрытии пятна жидкости, особенно масла и керосина, более заметны. Кроме того, удобно определять объем вытекшей жидкости путем взвешивания фильтровальной бумаги до и после сбора вытекшей жидкости по формуле:

где m2 и m1 - масса бумаги соответственно до и после сбора жидкости, кг;

Плотность жидкости, с.

Чувствительность гидростатического метода при одном и том же давлении зависит от времени выдержки проверяемого объекта под давлением.

Зависимость чувствительности гидростатического метода испытаний от времени выдержки и диаметра пятна масла, представлена на рисунке 1.2.

Чувствительность контроля повышается при увеличении времени выдержки до 10-15 мин. Дальнейшее увеличение времени выдержки нецелесообразно, так как не приводит к заметному повышению чувствительности. Чувствительность гидростатического метода в большей мере зависит от чистоты индикаторной жидкости. Механические примеси забивают каналы неплотностей и являются центрами образования слоев облитерации, уменьшающих просвет канала. Растворимые примеси увеличивают вязкость контрольной жидкости, что способствует уменьшению потока. Особое влияние оказывают поверхностно-активные вещества - компоненты смазок применяемых при сборке гидрогазовых систем, вымываемые керосином во время контроля. При их наличии в керосине поток через сравнительно малую неплотность может остановиться. Использование загрязненных индикаторных жидкостей может привести к наличию скрытых дефектов герметичности, не выявленных в процессе контроля, которые могут проявиться как значительные течи при действии эксплуатационных факторов.

Характерной ошибкой гидростатического метода контроля является принятие за дефект пятен на меловом покрытии или фильтровальной бумаге, возникающих от выступающей из соединений смазки, применяемой при сборке системы. Поэтому перед контролем все соединения должны быть очищены снаружи от следов смазки.

Рисунок 1.3 - Зависимость чувствительности D гидростатического метода испытаний от времени выдержки с и диаметра пятна масла d, мм

При пневматическом методе испытаний контролируемый объект заполняют воздухом или азотом под избыточным давлением, указанным в технических условиях. На наружную поверхность объекта наносят индикаторное вещество. При наличии течей индикаторный газ проникает через них, образуя пузырьки в индикаторном веществе. По ним производят качественную оценку герметичности объекта. Качественная оценка общей герметичности производится путем замера падения давления за определенный промежуток времени с последующим пересчетом на величину утечки Y, МПа/с определяется по формуле:

где V - контролируемый объем с несколькими неплотностями, м3;

Изменение величины давления, МПа;

Время замера падения давления, с.

В качестве индикаторных веществ применяют пенные эмульсии или массу на глицериновой основе. Компоненты массы должны быть хорошо перемешаны и взбиты на установке типа миксер непосредственно перед нанесением и через каждый час в процессе нанесенения. Глицериновую массу можно применять для контроля при температуре окружающего воздуха от 233 до 3О3 К.

Следует учитывать, что время наблюдения не должно превышать 5 мин, так как по истечении этого времени мыльная пленка начинает усыхать, терять свои эластичные свойства и на отдельных участках образовывать каверны.

Осмотр глицериновой массы с целью выявления газовых пузырьков, вздутий, кратеров при контроле производится дважды: первый раз по истечении 3 - 5 мин после нанесения, второй - по истечении 20 - 30 мин.

Зависимость чувствительности пневматического метода от времени наблюдения за состоянием пенной эмульсии и диаметра пузырьков представлена на рисунке 1.4.

1 - диаметр 2 мм; второй диаметр - 1 мм

Рисунок 1.4 - Зависимость чувствительности - D пневматического метода от времени наблюдения за состоянием пенной эмульсии и диаметра пузырьков

При пневмогидравлическом методе в проверяемой конструкции создают избыточное давление воздуха или азота и погружают ее в ванну с жидкостью. Глубина погружения в воду 3-5 мм.

Индикацию утечек производят по частоте появления и диаметру пузырьков газа, возникающих в местах течей.

Для получения чистой прозрачной воды в нее добавляют алюминиевые квасцы из расчета 500 г квасцов на 3 м3 воды. После тщательного перемешивания и выдержки в течении одних или полутора суток вода готова к использованию.

Величину утечки Y, МПа мм/с приближенно определяют по формуле:

где dо - диаметр пузырька в момент отрыва, мм;

Время до отрыва пузырька, с;

Изменение величины давления, МПа.

Время наблюдения за отдельным пузырьком не должно превышать 30 мин.

При частом появлении пузырьков целесообразен подсчет их количества за определенный промежуток времени выраженный формулой:

где n - число пузырьков.

Тогда величину утечки приближенно определяют по формуле:

С увеличением времени выдержки резко повышается чувствительность метода. Так, при увеличении времени проверки с трех до 30 мин чувствительность повышается в 10 раз. Поэтому в зависимости от требуемой герметичности при использовании пневмогидравлического метода необходимо указывать время, в течение которого следует проводить контроль герметичности. Зависимость чувствительности пневмогидравлического метода от времени проверки и диаметра пузырька представлена на рисунке 1.5.

1-- диаметр 1 мм; 2 - диаметр 1,5 мм; 8 - диаметр 2 мм; 4 - диаметр 3 мм.

Рисунок 1.5 - Зависимость чувствительности - D пневмогидравлического метода от времени т проверки и диаметра пузырька

При контроле следует учитывать, что пузырьки воздуха могут возникнуть на поверхности контролируемой конструкции за счет разницы температур поверхности конструкции и жидкости или могут быть занесены вместе с объектом испытания. Эти пузырьки следует удалять.

Галоидные течеискатели (ГТИ-2, ГТИ-3) могут быть применены для проверки герметичности ответственных соединений. Способ предполагает заполнение контролируемых объектов или магистралей пробным газом, находящимся под испытательным давлением. Места негерметичности определяются с помощью течеискателя, снабженного стрелочным прибором или другой вторичной сигнализацией. В течеискателе имеется датчик, состоящий из диода с платиновыми электродами, подогреваемого до температуры 800 - 900°С. Число положительных ионов, эмиссированных накаленной платиновой нитью, регистрируется стрелочным прибором. При наличии в воздухе газов, содержащих галоиды, происходит резкое повышение эмиссии ионов. В качестве пробных газов, содержащих галоиды, используются фреон-12 или фреон-22 с давлением насыщенных паров в зависимости от температуры от 2 до 15 105 Н/м2. Избыточное давление пробных газов должно быть ниже на 5 104 Н/м2 давления насыщенных паров при соответствующей температуре. Содержание фреона в смеси газов должно быть не менее 10%. Установка для пневматических испытаний по способу галоидных течеискателей включает в себя галоидные течеискатели ГТИ-2 или ГТИ-3, предохранительный клапан, манометры для измерения давления фреона и смеси газов, щуп течеискателя, систему запорных вентилей и вторичные индикаторные приборы. Отыскание неплотностей производится медленным перемещением теченскателя по испытываемому участку с наблюдением за прибором и прослушиванием уровня звуковых сигналов. Отклонение стрелки показывающего прибора и увеличение частоты звука свидетельствует о наличии негерметичности.

Обнаружение мест негерметичности способом накопления и масс-спектрометрическим способом производится гелиевыми течеискателями ПТИ-6 и ПТИ-7. Работа этих приборов основана на их способности определять присутствие гелия в испытываемом объекте. Установка для проверки герметичности этим способом включает в себя течеискатель типа ПТИ-6, выносной прибор ВПУ-1, вакуумные шланги, манометры для замера давления гелия и смеси газов, щуп, механический вакуумный насос, предохранительный клапан и систему вентилей. Контрольный газ засасывается щупом через неплотности соединений в течеискатель, отклонение стрелки которого и изменение частоты звуковых сигналов сигнализирует о негерметичности проверяемого участка. Метод накопления основан на проникновении газа из испытываемого объема в герметичную камеру, созданную вокруг этого объема, с последующим обнаружением (регистрацией) пробного газа течеискателями. Герметичная камера может представлять собой металлический, пластмассовый или тканевый кожух с устройствами для подключения течеискателей. Способ накопления можно использовать для отыскания негерметичностей при эксплуатации соединений, недоступных для непосредственной проверки не только гелиевыми течеискателями, но и другими анализаторами газов с дистанционными устройствами передачи сигналов.

Способ проверки герметичности индикаторной массой заключается в нанесении снаружи на испытываемый участок массы, содержащей вещество, чувствительное к аммиаку, и подаче в. испытываемый объем воздушно-аммиачной смеси. При разгерметизации индикаторная масса меняет свой цвет. В состав оборудования для проверки герметичности индикаторной массы входят распылитель для нанесения массы, баллон с аммиаком, манометры, система вентилей и эталон течи, с соответствующей окраской индикаторной массы.

Сигнальные способы контроля герметичности основаны на получении электрического сигнала или сигнала от газоанализаторов на пульт наблюдения от датчиков, срабатывающих при непосредственном соприкосновении с проникающей через уплотнение жидкостью или от сигналов, чувствительных к парам жидкостей анализаторов.

1.5 Автоматизация контроля герметичности

Одним из способов решения проблемы автоматизации контроля герметичности полых изделий, например, запорных кранов, является разработка многопозиционного переналаживаемого стенда, для автоматического контроля герметичности изделий сжатым воздухом, по манометрическому методу. Существует множество конструкций таких устройств. Известен автомат контроля герметичности изделий, содержащий стол с приводом, упругий уплотнительный элемент, бракующее устройство, источник сжатого газа, копир и устройство для зажима изделия.

Однако автоматизация процесса достигается за счет значительной сложности конструкции автомата, что снижает надежность его работы.

Известен автомат для контроля герметичности полых изделий, содержащий уплотнительные узлы с датчиками утечки, систему подачи испытательного газа механизмы перемещения изделий и механизма отбраковки.

Недостатком указанного автомата является сложность технологического процесса контроля герметичности изделий и невысокая производительность.

Наиболее близким к изобретению является стенд для испытания изделий на герметичность, содержащий ротор, привод его шагового перемещений, размещенные на роторе контрольные блоки, каждый из которых содержит элемент сравнения, соединенный с бракующим элементом, элемент герметизации изделия, содержащий выходную трубку и привод его перемещения, который выполнен в виде копира с возможностью взаимодействия с выходной трубкой.

Однако это устройство не позволяет увеличить производительность, так как при этом снижается надежность испытания изделий.

На рисунке 1.6 приведено автоматизированное устройство для испытания на герметичность на основе камерного способа. Оно состоит из камеры 1, в полости которой размещено контролируемое изделие 2, соединенное с блоком 3 подготовки воздуха через отсечной вентиль 4, мембранного разделителя 5 с мембраной 6 и полостями А и Б, струйного элемента ИЛИ-НЕ ИЛИ 7. Полость А мембранного разделителя 5 соединена с полостью камеры 1, а полость Б через сопло 8 - с выходом 9 ИЛИ струйного элемента 7. К другому его выходу 10 НЕ ИЛИ подсоединен пневмоусилитель 11 с пневмолампой 12. Полость Б дополнительно соединена каналом 13 с управляющим входом 14 струйного элемента 7, атмосферные каналы 15 которого снабжены заглушками 16.

Устройство работает следующим образом. В контролируемое изделие 2 подается давление от блока 3 подготовки воздуха, которое при достижении испытательного уровня отсекается вентилем 4. Одновременно при подаче питания в струйный элемент 7 струя воздуха через выход 9 ИЛИ и сопло 8 проходит в полость Б мембранного разделителя 5 и через канал 13 - на управляющий вход 14 струйного элемента 7. Таким образом, при отсутствии утечки из контролируемого изделия 2 струйный элемент 7 находится в устойчивом состоянии под действием его же выходной струи. При наличии утечки из изделия 2 во внутренней полости камеры 1 происходит повышение давления. Под действием этого давления мембрана 6 прогибается и перекрывает сопло 8. Давление струи воздуха в выходе 9 струйного элемента 7 увеличивается. Одновременно пропадает струя на управляющем входе 14, а так как струйный элемент ИЛИ - НЕ ИЛИ является моностабильным элементом, то он переключается в свое устойчивое состояние, когда струя выходит через выход 10 НЕ ИЛИ. При этом срабатывает усилитель 11 и пневмолампа 12 сигнализирует о негерметичности изделия 2. Этот же сигнал может быть подан в струйную систему управления разбраковкой .

Данное устройство построено на элементах струйной пневмоавтоматики, что обеспечивает повышение его чувствительности. Еще одним достоинством устройства является простота конструкции и удобство настройки. Устройство может применяться для контроля герметичности газовой арматуры компрессионным способам при низком испытательном давлении, если мембранный разделитель использовать как датчик, соединенный непосредственно с контролируемым изделием. При этом наличие ненормативной утечки можно контролировать по размыканию мембраны и сопла.

Рисунок 1.6 ? Устройство для испытания на герметичность

На рисунке 1.8 приведено устройство, обеспечивающее автоматизацию контроля герметичности пневмоаппаратуры , например, электропневмоклапанов, то есть изделий аналогичных рассматриваемой в диссертации газовой арматуре.

Испытуемое изделие 1 соединено с источником 2 давления, электромагнитный байпасный клапан 3 установлен между выходом 4 изделия 1 и выхлопной линией 5. Электромагнитный отсечной клапан 6 своим входом 7 соединяется в процессе испытания с выходом 4 изделия 1, а выходом 8 - с пневматическим входом 9 преобразователя 10 системы 11 измерения утечки, который выполнен в виде теплового расходомера. Система 11 содержит также вторичный блок 12, подключенный к управляющему входу 13 преобразователя 10, пневматический выход 14 которого соединен с выхлопной линией 5. Блок 15 управления клапанами содержит мультивибратор 16 и блок 17 задержки и формирования импульсов. Одним выходом мультивибратор 16 подсоединен к управляющему входу 18 отсечного клапана 6, другим - к управляющему входу 19 клапана 3 и блоку 17. подсоединяемому в процессе контроля к приводу 20 испытуемого изделия 1. Тарировочная линия 21 состоит из регулируемого дросселя 22 и запорного вентиля 23. Она включена параллельно изделию 1 и служит для настройки устройства.

Контроль утечки осуществляется следующим образом. При включении блока 15 управления клапанами на выходе мультивибратора 16 появляется импульс, который открывает клапан 3 и блок 17 задержки и формирования импульсов. Этот же импульс открывает через установленное время задержки испытуемое изделие 1 путем подачи электрического сигнала с блока 17 на привод 20. При этом пробный газ стравливается через клапан 3 в выхлопную линию 5. Через задаваемое мультивибратором 16 время импульс снимается с клапана 3, закрывая его, и подается на вход 18 отсечного клапана 6, открывая его. При этом газ, наличие которого обусловленно утечкой из изделия 1, попадает в систему 11 измерения утечки и, проходя через нее, вырабатывает в преобразователе 10 электрический сигнал, пропорциональный расходу газа. Этот сигнал поступает во вторичный блок 12 системы измерения утечки, в котором он корректируется, и регистрируется величина протекания газа через закрытое испытуемое изделие 1. Через задаваемое мультивибратором время, необходимое для выхода системы измерения утечки на стационарный режим, цикл испытания повторяется.

К недостаткам данного устройства относится следующее. Устройство предназначено для контроля герметичности газовой арматуры только одного типа, снабженного электромагнитным приводом. Одновременно контролируется только одно изделие, то есть процесс малопроизводительный.

На рисунке 1.8 приведена схема автоматизированного устройства для контроля утечек газа компрессионным способом с пневмо-акустическим измерительным преобразователем . Устройство состоит из промежуточных блоков и, обеспечивающих контроль больших утечек (более 1 /мин) и пневмо-акустического блока для контроля малых величин утечек (0,005…1) /мин. Пневмо-акустический блок преобразователя имеет две усилительные манометрические ступени, состоящие из микроманометров 1, 2 и акустико-пневматических элементов 3, 4, связанные между собой через распределительный элемент 5. Запись результатов измерения осуществляется вторичным прибором 6 типа ЭПП-09, соединенным с блоком через распределитель 7. Контролируемое изделие 8 подключается к источнику испытательного давления через отсечной клапан К4. Работа устройства осуществляется в непрерывно-дискретном автоматическом режиме, что обеспечивается логическим блоком 9 управления и клапанами -. Контролируемое изделие 8 при помощи блока 9 последовательно подключается к блокам и, соответствующим включением клапанов и, где определяется предварительная величина утечки пробного газа. В случае малого значения утечки (менее 1 /мин) изделие подключается посредством клапана к пневмо-акустическому блоку, где окончательно определяется величина утечки, которая фиксируется вторичным прибором 6. Устройство обеспечивает контроль газовых утечек с погрешностью не более ±1,5 %. Давление питания и элемента трубка - трубка в блоке 1800 Па.

Данное устройство может быть применено для автоматического контроля газовой арматуры с широким диапазоном допустимых утечек газа. Недостатками устройства являются сложность конструкции из-за большого количества измерительных блоков, а также одновременный контроль только одного изделия, что существенно снижает производительность процесса.

Рисунок 1.8 Автоматизированное устройство для контроля утечек газа компрессионным способом.

Перспективными для контроля герметичности газовой арматуры являются устройства, обеспечивающие одновременное испытание нескольких изделий. Примером таких устройств является автомат для контроля герметичности полых изделий, приведенный на рисунок 1.14 . Он содержит раму 1, закрепленную на стойках 2 и закрытую кожухом 3, а также поворотный стол 4 с приводом 5. Поворотный стол снабжен планшайбой 6, на которой равномерно расположены восемь гнезд 7 под изделия 8. Гнезда 7 выполнены съемными и имеют вырезы 9. Уплотнительные узлы 10 закреплены на раме 1 с шагом в два раза большим шага гнезд 7 на планшайбе 6. Каждый уплотнительный узел 10 содержит пневмоцилиндр 11 для перемещения изделия 8 из гнезда 7 в уплотнительный узел и обратно, на штоке 12 которого установлен кронштейн 13 с уплотнительной прокладкой 14. Кроме того, уплотнительный узел 10 содержит головку 15 с уплотнительным элементом 16, которая сообщена посредством пневмоканалов с блоком 17 подготовки воздуха и с датчиком 18 утечки, который представляет собой мембранный датчик давления с электроконтактами. Механизм 19 отбраковки установлен на раме 1 и состоит из поворотного рычага 20 и пневмоцилиндра 21, шток которого шарнирно связан с рычагом 20. Годные и отбракованные изделия собираются в соответствующие бункеры. Автомат имеет систему управления, текущая информация о его работе отображается на табло 22.

Автомат работает следующим образом. Контролируемое изделие 8 устанавливается на позиции загрузки в гнездо 7 на планшайбе 6 поворотного стола 4. Привод 5 осуществляет шаговый поворот стола на 1/8 полного оборота с определенными временными интервалами. Для контроля герметичности посредством срабатывания пневмоцилиндра 11 одного из уплотнительных узлов 10 изделие 8 поднимается в кронштейне 13 и прижимается к уплотнительному элементу 16 головки 15. После этого от пневмосистемы подается испытательное давление, которое затем отсекается. Падение давления в изделии 8 регистрируется датчиком 18 утечки через определенное время контроля, которое задается шагом стола 4. Остановка стола 4 служит сигналом, разрешающим осуществление соответствующей операции на позициях I - VIII во время выстоя стола. Таким образом, при повороте стола на один шаг на каждой из его позиций осуществляются одна из следующих операций: загрузка изделия; подъем изделия к уплотнительному узлу; контроль герметичности; опускание изделия в гнездо на планшайбе; разгрузка годных изделий; удаление бракованных изделий. Последние поступают на позицию VIII, при этом рычаг 20 под действием штока пневмоцилиндра 21 поворачивается в шарнире, и своим нижним концом проходит через вырез 9 гнезда 7, удаляя изделие 8, которое под собственным весом падает в бункер. Аналогично разгружаются годные изделия на позиции VII (разгрузочное устройство не показано).

Недостатками устройства являются: необходимость подъема изделия с планшайбы в уплотнительный узел для контроля герметичности; использование в качестве датчика утечки мембранного преобразователя давления с электрическими контактами, имеющего низкие точностные характеристики по сравнению с другими типами датчиков давления.

Проведенные исследования показали, что одним из перспективных путей совершенствования манометрического метода контроля герметичности является совместное применение мостовых измерительных схем и различных преобразователей дифференциального типа.

Пневматическая мостовая измерительная схема для устройств контроля герметичности строится на двух делителях давления (рис. 1.9).

Рис.1.9 Пневматическая мостовая измерительная схема, построенная на двух делителях давления

Первый делитель давления состоит из постоянного дросселя fli и регулируемого дросселя Д2. Второй - состоит из постоянного дросселя Дз и объекта контроля, который условно также можно считать дросселем Д4. Одна диагональ моста связана с источником испытательного давления рк и атмосферой, вторая диагональ - измерительная, в неё подключается преобразователь ПД. Для подбора параметров элементов и настройки мостовой схемы, состоящей из ламинарных, турбулентных и смешанных дросселей используется зависимость:

где R1 R2,R3, R4 - гидравлические сопротивления элементов Д1, Д2, Д3, Д4 соответственно.

Учитывая данную зависимость, возможность применения как уравновешенной, так и неуравновешенной мостовой схемы, а также то, что гидравлическое сопротивление подводящих каналов мало по сравнению с сопротивлением дросселей и поэтому им можно пренебречь, то на основе приведенной пневматической мостовой схемы можно строить устройства для контроля герметичности различных объектов. При этом процесс контроля легко автоматизируется. Повысить чувствительность устройства можно за счет применения ненагруженных мостовых схем, т.е. устанавливать в измерительной диагонали преобразователи имеющие R =. Используя формулы для расхода газа при докритическом режиме получим зависимости для определения давления в междроссельных камерах ненагруженного моста.

Для первой (верхней) ветви моста:

для второй (нижней) ветви моста:

где S1, S2, S3, S4 - площади проходного сечения канала соответствующего дросселя; Рв, Рн - давление в междроссельной камере верхней и нижней ветви моста, рк - испытательное давление.

Разделив (2) на (3) получим

Из зависимости (4) следует ряд преимуществ применения мостовой схемы в устройствах для контроля герметичности по манометрическому методу: отношение давлений в междроссельных камерах не зависит от испытательного давления, что позволяет однозначно определять величину утечки; не требуется отсечка объекта в процессе контроля от источника испытательного давления. Учитывая, что величина, S4 определяется общей площадью дефектов (неплотностей) в контролируемом объекте, а следовательно, связана с величиной суммарной утечки, то применив в качестве Д2 регулируемый дроссель и осуществляя им подбор необходимой S2 можно создать постоянный перепад давления на дросселе Д1 и тем самым настраивать схему на измерение или контроль различных уровней утечки, т.е. существенно расширить диапазон применения манометрического метода контроля герметичности.

...

Подобные документы

    Этапы развития автоматизации производства. История создания и усовершенствования средств для измерения и контроля. Понятие и структурная схема систем автоматического контроля, их компоненты. Особенности и области использования микропроцессорных устройств.

    курсовая работа , добавлен 09.01.2013

    Принципы и критерии проектирования химических реакторов. Сущность промышленного процесса каталитической гидродепарафинизации. Основные реакции гидрирования углеводородов, принципы гидроочистки. Расчет реакторов гидропарафинизации дизельного топлива.

    курсовая работа , добавлен 02.08.2015

    Понятие, классификация и сущность неразрушающего контроля, его использование, физические принципы и технические средства. Основные элементы автоматических устройств. Принципы и методы ультразвуковой дефектоскопии, безопасность и экологичность проекта.

    дипломная работа , добавлен 25.07.2011

    Разрушающие методы контроля с целью получения необходимых характеристик сварного соединения. Испытание образцов статическим растяжением. Микроструктурный анализ с помощью специальных микроскопов. Варианты пневматических и виды гидравлических испытаний.

    контрольная работа , добавлен 28.01.2010

    Состав технических устройств контроля ГПС, распространенные средства прямого контроля с высокой точностью заготовок, деталей и инструмента. Модули контроля деталей вне станка. Характеристика и возможности координатно-измерительной машины КИМ-600.

    реферат , добавлен 22.05.2010

    Температура и температурные шкалы. Технические термометры электроконтактные. Структурные схемы стабилизированных источников электропитания. Разработка и описание работы измерительного канала микропроцессорной системы измерения и контроля температуры.

    дипломная работа , добавлен 30.06.2012

    Виды сырья, применяемые для производства керамогранитной плитки. Функции, задачи отдела управления качеством продукции, отдела технического контроля и заводской лаборатории. Контролируемые параметры входного контроля. Особенности контроля готовых изделий.

    курсовая работа , добавлен 21.03.2012

    Создание схемы парового котла типа ПК-41: система подачи топлива и технологические параметры. Анализ выпускаемых измерительных устройств температуры и давления. Разработка системы автоматического контроля и сигнализации. Расчет погрешностей измерения.

    дипломная работа , добавлен 09.05.2014

    Требования к САПР, принципы ее разработки. Этапы и процедуры проектирования самолетов. Необходимость и проблемы декомпозиции конструкции самолета в процессе его автоматизированного проектирования. Проблемы моделирования и типы проектных моделей самолета.

    реферат , добавлен 06.08.2010

    Особенности безмашинного проектирования. Основы проектирования плавильных отделений литейных цехов. Автоматизированные системы проектирования смежных объектов. Методы и алгоритмы выбора и размещения объектов при проектировании; конфигурации соединений.

Введение

Глава 1 Анализ состояния проблемы автоматизации контроля герметичности и постановка задачи исследования 9

1.1 Основные термины и определения, используемые в настоящем исследовании 9

1.2 Особенности контроля герметичности газовой арматуры 11

1.3 Классификация газовых методов испытания и анализ возможности их применения для контроля герметичности газовой арматуры 15

1.4 Обзор и анализ средств автоматического контроля герметичности по манометрическому методу 24

1.4.1 Первичные преобразователи и датчики для автоматических систем контроля герметичности 24

1.4.2 Автоматизированные системы и устройства контроля герметичности 30

Цель и задачи исследования 39

Глава 2 Теоретическое исследование манометрического метода испытания на герметичность 40

2.1 Определение режимов течения газа в объектах испытания... 40

2.2 Исследование компрессионного способа испытания на герметичность 42

2.2.1 Исследование временных зависимостей при контроле герметичности компрессионным способом 43

2.2.2 Исследование чувствительности контроля герметичности компрессионным способом с отсечкой 45

2.3 Исследование способа сравнения с непрерывной подачей испытательного давления 51

2.3.1 Схема контроля герметичности по способу сравнения с непрерывной подачей испытательного давления 52

2.3.2 Исследование временных зависимостей при контроле герметичности по способу сравнения 54

2.3.3 Исследование чувствительности контроля герметичности по способу сравнения с непрерывной подачей испытательного давления 65

2.3.4 Сравнительная оценка чувствительности контроля герметичности компрессионным способом с отсечкой и способом сравнения 68

Вы воды к главе 2 72

Глава 3 Экспериментальное исследование параметров схем контроля герметичности, выполненных на основе способа сравнения 75

3.1 Экспериментальная установка и методика исследования 75

3.1.1 Описание экспериментальной установки 75

3.1.2 Методика исследования схем контроля герметичности 78

3.2 Экспериментальное исследование схемы контроля герметичности на основе способа сравнения 81

3.2.1 Определение характеристики p = f(t) линий схемы контроля герметичности 81

3.2.2 Исследования временных характеристик линий схемы контроля герметичности по способу сравнения 86

3.2.3 Исследование статической характеристики измерительной линии схемы контроля герметичности 91

3.3. Экспериментальное исследование устройства для контроля герметичности, выполненного на основе способа сравнения 97

3.3.1 Исследование модели устройства для контроля герметичности с дифференциальным манометрическим датчиком 97

3.3.2 Оценка точностных характеристик устройств для контроля герметичности, выполненных по схеме сравнения 100

3.4 Вероятностная оценка достоверности сортировки изделий при контроле герметичности по способу сравнения 105

3.4.1 Экспериментальное исследование распределения величины давления, эквивалентного утечке пробного газа в партии изделий 105

3.4.2 Статистическая обработка результатов эксперимента по оценке достоверности сортировки 108

4.3 Разработка датчиков герметичности с улучшенными рабочими характеристиками 126

4.3.1 Конструкция датчика герметичности 127

4.3.2 Математическая модель и алгоритм расчета датчика герметичности 130

4.4 Разработка автоматизированного стенда для контроля герметичности.133

4.4.1 Конструкция автоматизированного многопозиционного стенда 133

4.4.2 Выбор параметров схем контроля герметичности 142

4.4.2.1 Методика расчета параметров схемы контроля герметичности по компрессионному способу с отсечкой 142

4.4.2.2 Методика расчета параметров схемы контроля герметичности по способу сравнения 144

4.4.3 Определение производительности автоматизированного стенда для контроля герметичности 146

4.4.4 Определение параметров герметизирующих уплотнений для автоматизированного стенда 149

4.4.4.1 Методика расчета уплотняющего устройства с цилиндрической манжетой 149

4.4.4.2 Методика расчета торцевого кольцевого уплотнения 154

Общие выводы и результаты 157

Список литературы 159

Приложение 168

Введение к работе

Важной проблемой в ряде отраслей промышленности является повышение требований к качеству и надежности выпускаемой продукции. Это вызывает острую необходимость в совершенствовании существующих, создании и внедрении новых методов и средств контроля, в том числе контроля герметичности, который относится к дефектоскопии - одному из видов контроля качества систем и изделий .

В промышленном производстве запорной и распределительной арматуры, в которой рабочей средой является сжатый воздух или другой газ, существующими стандартами и техническими условиями на ее приемку регламентируется, как правило, стопроцентный контроль параметра "герметичность" . Основным узлом (рабочим элементом) такой арматуры является подвижная пара "плунжер-корпус" или поворотный клапанный элемент, которые работают в широком диапазоне давлений. Для герметизации газовой арматуры применяются различные уплотнительные элементы и смазки (герметики). В процессе функционирования ряда конструкций газовой арматуры допускается определенная утечка рабочей среды . Превышение допустимой утечки из-за некачественной газовой арматуры может привести к неправильному (ложному) срабатыванию производственного оборудования, на котором она установлена, что может вызвать серьезную аварию. В бытовых газовых плитах повышенная утечка природного газа может стать причиной пожара или отравления им людей. Поэтому превышение допустимой утечки индикаторной среды при соответствующем приемо-сдаточном контроле газовой арматуры считается негерметичностью, т. е. браком изделия, а исключение брака повышает надежность, безопасность и экологическую чистоту всего агрегата, прибора или устройства, в котором газовая арматура применяется.

Контроль герметичности газовой арматуры является трудоемким, длительным и сложным процессом. Например, в производстве пневматической миниап-паратуры он занимает 25-30 % от общей трудоемкости и до 100-120 % от времени

сборки . Решить эту проблему в крупносерийном и массовом производстве газовой арматуры можно применением автоматизированных методов и средств контроля, которые должны обеспечить требуемую точность и производительность . В реальных производственных условиях решение этой проблемы часто осложняется применением методов контроля, которые обеспечивают необходимую точность, но трудно поддаются автоматизации из-за сложности метода или специфики испытательной аппаратуры.

Для испытаний на герметичность изделий только лишь посредством газообразной испытательной среды разработано около десяти методов, для реализации которых создано свыше ста различных способов и средств контроля . Развитию современной теории и практики контроля герметичности посвящены исследования Зажигина А. С, Запунного А. И., Ланис В. А., Левиной Л. Е., Лемберского В. Б., Рогаль В. Ф., Сажина С. Г., Тру-щенко А. А., Фадеева М. А., Фельдмана Л. С.

Однако при разработке и внедрении средств контроля герметичности имеется ряд проблем и ограничений. Так большинство высокоточных методов можно и целесообразно применять только к крупногабаритным изделиям, в которых обеспечивается полная герметичность. Кроме того, накладываются ограничения экономического, конструктивного характера, экологические факторы, требования безопасности для обслуживающего персонала. В серийном и крупносерийном производстве, например, средств пневмоавтоматики, газовой арматуры для бытовой техники, в которой при приемо-сдаточных испытаниях допускается определенная утечка индикаторной среды и, следовательно, требования к точности контроля снижаются, на первое место при выборе метода контроля герметичности выдвигается возможность его автоматизации и обеспечения на этой основе высокой производительности соответствующего контрольно-сортировочного оборудования, что необходимо при стопроцентном контроле качества продукции.

Анализ особенностей оборудования и основных характеристик наиболее применяемых в промышленности газовых методов испытаний на герметичность позволил сделать вывод о перспективности для автоматизации контроля герме-

тичности газовой арматуры использования способа сравнения и компрессионного способа, реализующих манометрический метод. В научно-технической литературе этим способам испытаний уделено мало внимания из-за их сравнительно низкой чувствительности, однако отмечается, что они наиболее легко автоматизируются . При этом отсутствуют какие-либо рекомендации по выбору и расчету параметров устройств контроля герметичности, выполненным по схеме сравнения с непрерывной подачей испытательного давления. Поэтому актуальными и важными являются исследования в области газодинамики глухих и проточных емкостей, как элементов схем контроля, а также техники измерения давления газа в качестве основы для создания новых типов преобразователей, датчиков, устройств и систем автоматического контроля герметичности изделий, перспективных для использования в производстве газовой арматуры.

При разработке и внедрении автоматизированных устройств контроля герметичности возникает важный вопрос достоверности контрольно-сортировочной операции. В связи с этим в диссертации проведено соответствующее исследование, на основании которого разработаны рекомендации, позволяющие при автоматической сортировке по параметру "герметичность" исключить попадание бракованных изделий в годные. Еще одним важным вопросом является обеспечение заданной производительности автоматизированного оборудования. В диссертации даны рекомендации по расчету рабочих параметров автоматизированного стенда для контроля герметичности в зависимости от требуемой производительности.

Работа состоит из введения, четырех глав, общих выводов, списка литературы и приложения.

В первой главе рассмотрены особенности контроля герметичности газовой арматуры, допускающей при функционировании определенную утечку. Приведен обзор методов газовых испытаний на герметичность, классификация и анализ возможности их применения для автоматизации контроля газовой арматуры, позволившие выбрать наиболее перспективный - манометрический метод. Рассмотрены устройства и системы, обеспечивающие автоматизацию контроля герметичности. Сформулированы цели и задачи исследования.

Во второй главе теоретически исследуются два способа контроля герметичности, реализующие манометрический метод: компрессионный с отсечкой давления и способ сравнения с непрерывной подачей испытательного давления. Определены математические модели исследуемых способов, на основании которых проведены исследования их временных характеристик и чувствительности при различных режимах течения газа, разных емкостях линий и соотношениях давлений, позволившие выявить преимущества способа сравнения. Даны рекомендации по выбору параметров схем контроля герметичности.

В третьей главе экспериментально исследованы статические и временные характеристики линий схемы контроля герметичности по способу сравнения при различных значениях утечки, емкости линий и испытательного давления, показана их сходимость с аналогичными теоретическими зависимостями. Экспериментально проверена работоспособность и оценены точностные характеристики устройства для контроля герметичности, выполненного по схеме сравнения. Приведены результаты оценки достоверности сортировки изделий по параметру "герметичность" и рекомендации по настройке соответствующих автоматизированных контрольно-сортировочных устройств.

В четвертой главе дано описание типовых схем автоматизации манометрического метода испытаний и рекомендации по проектированию автоматизированного оборудования для контроля герметичности. Приведены оригинальные конструкции датчика герметичности и автоматизированного многопозиционного стенда для контроля герметичности. Предложены методики расчета устройств контроля герметичности и их элементов, представленные в виде алгоритмов, а также рекомендации по расчету рабочих параметров контрольно-сортировочного стенда в зависимости от требуемой производительности.

В Приложении представлены характеристики газовых методов испытания на герметичность и временные зависимости для возможных последовательностей изменения режимов течения газа в проточной емкости.

Особенности контроля герметичности газовой арматуры

Приведенные в диссертации разработки и исследования связаны с газовой арматурой, при изготовлении которой существующими стандартами и техническими условиями регламентируется стопроцентный контроль параметра "герметичность" и допускается определенная утечка рабочей среды . Под газовой арматурой, рассматриваемой в настоящей работе, понимаются устройства, предназначенные для применения в различных системах, в которых рабочей средой является газ или смесь газов под давлением (например, природный газ, воздух и т. п.), для осуществления функций отсечки, распределения и др. К газовой арматуре относятся: клапаны, распределители, вентили и другие средства промышленной пневмоавтоматики высокого (до 1,0 МПа) и среднего давления (до 0,2...0,25 МПа), запорные краны бытовых газовых плит, работающие на низком давлении (до 3000 Па). Испытанию на герметичность подвергаются как готовые изделия, так и их составные элементы, отдельные узлы и т. п. В зависимости от назначения изделий, условий, в которых они эксплуатируются и конструктивных особенностей к ним предъявляются различные требования в отношении их герметичности.

Под герметичностью газовой арматуры понимается ее способность не пропускать через стенки, соединения и уплотнения рабочую среду, подводимую под избыточным давлением. При этом допускается определенная величина утечки, превышение которой соответствует негерметичности изделия. Наличие утечки объясняется тем, что основным узлом - рабочим элементом таких устройств является подвижная, трудно уплотняемая пара: золотник-корпус, сопло-заслонка, шаровой, конусный или седельчатый клапаны и т. п. Кроме того, конструкция устройства, как правило, содержит неподвижные уплотняющие элементы: кольца, манжеты, сальники, смазки, дефекты которых также могут быть причиной утечки. Негерметичность газовой арматуры, т. е. наличие утечки рабочей среды превышающей допустимую, может привести к серьезным авариям, поломкам и другим отрицательным результатам в работе оборудования, в котором она применяется. Запорный кран (рис. 1.1) является важным узлом бытовых газовых плит. Он предназначен для регулирования подачи природного газа к горелкам плиты и его отсечки по окончании работы. Конструктивно кран представляет собой устройство с поворотным клапанным элементом 1, смонтированным в разъемном корпусе 2, в котором имеются каналы для прохода газа. Места сопряжения деталей крана нуждаются в уплотнении для обеспечения максимально возможной его герметичности. Уплотнение осуществляется специальной графитовой смазкой - гермети-ком, изготавливаемой в соответствии с ТУ 301-04-003-9. Некачественное уплотнение приводит при эксплуатации плиты к утечке природного газа, что в условиях ограниченного пространства бытовых помещений взрыво- и пожароопасно, кроме того, нарушается экология (среда обитания человека).

В соответствии с установлены следующие требования при проведении испытаний на герметичность запорного крана. Испытания проводятся сжатым воздухом под давлением (15000±20) Па, так как более высокое давление может нарушить уплотняющую смазку. Утечка воздуха не должна превышать 70 см3/ч. Допустимый объем коммутационных каналов и емкостей контролирующего устройства не более (1 ±0,1) дм3. Время контроля 120 с.

Утечку сжатого воздуха в лабораторных условиях в соответствии с рекомендуется контролировать с помощью волюмометрического устройства (рис. 1.2). Устройство состоит из измерительной бюретки 1, к которой по каналу 2 подходит воздух под давлением, резервного сосуда 3, сосуда 4 для поддержания необходимого уровня и места подключения испытуемого крана 5. Допускается осуществлять контроль с помощью других устройств, пофешность которых не превышает пофешности волюмометрического устройства ±10 см3/ч. Контроль утечки осуществляется посредством измерения вытесненного объема воды.

К газовой арматуре среднего и высокого давления, которую необходимо испытывать на герметичность, относятся пневмораспределители, переключатели, регулируемые дроссели и другие устройства пневмоаппаратуры, типовые конструкции которых приведены на рис. 1.3 и 1.4. На рис. 1.3 показан пневмораспреде-литель с цилиндрическим золотником типа П-РОЗП1-С, Пневмораспределитель крановый с плоским золотником типа В71-33

каналом 1 для управляющего сигнала, цилиндрического золотника 2, корпуса 3, крышки с каналом 4, соединяющим с атмосферой, рабочего канала 5 и уплотни-тельного кольца 6. На рис. 1.4 показан пневмораспределитель крановый с плоским золотником типа В71-33, состоящий из корпуса 1, крышки 2, плоского поворотного золотника 3, рукоятки 4, валика 5, рабочих каналов 6, 7, 8, 9, канала 10, соединяющего с атмосферой и канала для подвода сжатого воздуха 11. Наличие регламентированной утечки в пневмоаппаратуре объясняется тем, что в ее конструкциях содержатся плоские золотники, цилиндрические золотники с уплотняющим зазором, клапанные и крановые устройства, которые предполагают перетечки сжатого воздуха из одной полости в другую или утечки в атмосферу через зазоры и неплотности. Величина допустимой утечки конкретного пневмоаппарата устанавливается разработчиком на основании ГОСТ и указывается в его технической характеристике. Значения допустимой утечки для различных типов пневмоаппара-тов при установленном для данного устройства номинальном давлении сжатого воздуха приведены в таблице 1.1 . Пневмоаппаратура применяется в системах управления различным промышленным оборудованием, поэтому повышенные утечки рабочей среды и, как следствие, падение давления могут привести к несрабатыванию устройства или вызвать ложное срабатывание, т. е. привести к аварийной ситуации, поломке оборудования.

При испытании на герметичность пневмоаппаратуры возникают сложности, обусловленные многообразием конструкций, широким диапазоном допустимой утечки индикаторной среды (0,0001...0,004) м3/мин; различной величиной испытательного давления (0,16...1,0) МПа и времени контроля (от десятков секунд и более). Кроме того, загрязнение индикаторной среды (сжатого воздуха) не должно превышать 1 класс по ГОСТ 17433-91, температура окружающей среды 20±5С. Погрешность средств измерения и контроля, по которым определяется величина утечки, не должна превышать ±5 % . Для контроля герметичности пневмоаппаратуры применяются датчики (сигнализаторы) давления и специально разработанное оборудование. Анализ этих устройств приведен в разделе 1.4.

Исследование чувствительности контроля герметичности компрессионным способом с отсечкой

Чувствительность контроля герметичности - это наименьшая утечка пробного газа, которая может быть измерена в процессе испытания изделия . Исследуем зависимость чувствительности контроля герметичности компрес Таблица 2.2 Временные зависимости при различных последовательностях режимов истечения газа из глухой камере Варианты соотношения давлений Последовательность изменения режимов истечения в переходном процессе Временные зависимости сионным способом с отсечкой от испытательного давления р0 при заданных У и рд при различных режимах истечения газа через дроссель, т. е. при соответствующих утечках газа через неплотности объекта испытания. Выразим утечку газа У через массовый расход G Предположим, что независимо от режима истечения газа при величине про 47 водимости f утечка равна Уд, а при проводимости / утечка равна У. Для турбулентного надкритического режима после подстановки в (2.15) формулы (2.5) получим:При одинаковой продолжительности испытания /, -(в результате преобразования (2.19) и (2.20) получим соотношение (2.21) Подставляя (2.21) в (2.18), получим соотношение Так как в (2.23) ЛУ будет иметь одинаковую абсолютную величину не зависимо от соотношений Уд У или Уд У, то для упрощения расчетов примем, что Уд У. Тогда (2.23) можно представить в виде выражения- отклик давления рА на изменение утечки АУ. Если в зависимости (2.25) величину Арт принять равной порогу чувствительности рп манометрического измерительного устройства, то получим формулу для определения самого малого изменения утечки Уч, которое может быть зафиксировано при контроле герметичности исследуемым способом. В соответствии с определением эта величина У, является чувствительностью контроля герметичности компрессионным способом с отсечкой при турбулентном надкритическом режиме

Преобразование (2.25) относительно р0 позволяет получить выражение для определения испытательного давления в зависимости от чувствительности Уч контроля герметичности при турбулентном надкритическом режиме Подставив в зависимость (2.35) вместо Д/?от порог чувствительности рп манометрического измерительного устройства, получим формулу для определения чувствительности Уч контроля герметичности компрессионным способом с отсечкой при турбулентном докритическом режиме Преобразование (2.36) относительно р0 позволяет получить выражение для определения испытательного давления в зависимости от чувствительности Уч контроля герметичности при турбулентном докритическом режиме ґ Ґ у л у, При одинаковой продолжительности испытания /, = / в результате преобразования (2.41) и (2.42) получим соотношение

Исследование способа сравнения с непрерывной подачей испытательного давления Общие положения и схема испытания на герметичность по способу сравнения с отсечкой источника пробного газа рассмотрены в разделе 1.3.2. Однако, как показал анализ, перспективным для дальнейшего исследования является способ сравнения с непрерывной подачей испытательного давления. Это объясняется тем, что запорная, распределительная и переключающая газовая арматура в реальных условиях функционирует под постоянным рабочим давлением и по техническим характеристикам допускает определенную величину утечки . Поэтому для испытания на герметичность данного класса устройств целесообразно применять именно схему контроля с непрерывной подачей испытательного давления, как наиболее соответствующую реальным условиям их функционирования. Кроме того, устраняется необходимость отсечки источника давления при каждом испытании, что существенно упрощает конструкцию контрольного устройства и облегчает автоматизацию процесса испытания. 2.3.1 Схема контроля герметичности по способу сравнения с непрерывной подачей испытательного давления представлена схема, поясняющая контроль герметичности по способу сравнения с непрерывной подачей испытательного давления. Схема состоит из измерительной линии ИЛ и линии ЭЛ эталонного давления, входы которых Схема контроля герметичности по способу сравнения с непрерывной подачей испытательного давления подключены к общему источнику испытательного давления pQ, а выходы соединены с атмосферой. Линия эталонного давления содержит входное пневматическое сопротивление (дроссель) проводимостью /J, емкость с регулируемым объемом Гэ и выходное пневматическое сопротивление с регулируемой проводимостью /2, которые предназначены для настройки схемы. Измерительная линия содержит входное пневматическое сопротивление проводимостью /т, и объект испытания ОИ, который можно представить в виде емкости объемом Ки, имеющей течь эквивалентную пневматическому сопротивлению проводимостью f4. Измерительная и эталонная линии образуют пневматический измерительный мост. Сравнение давлений в линиях схемы осуществляется посредством дифференциального манометрического измерительного устройства ИУ, включенного в диагональ пневматического моста. В данной схеме измерительное устройство имеет проводимость /= 0, поэтому давления /г, и рн в линиях не зависят друг от друга. Каждая линия схемы представляет собой проточную емкость. При контроле герметичности по схеме, приведенной на рис. 2.2, под утечкой понимается объемный расход газа через все сквозные неплотности объекта испытания при установившемся режиме течения пробного газа в линиях схемы. Такой режим соответствует одинаковому массовому расходу газа через входное и выходное сопротивление в линии.

Методика исследования схем контроля герметичности

Экспериментальное исследование проводилось с использованием серийных промышленных образцов запорных кранов бытовых газовых плит (при низком испытательном давлении), запорной и распределительной аппаратуры пневмоавтоматики (при среднем и высоком испытательном давлении), а также моделей течей. При этом использовалась следующая методика: 1. Длина пневмолинии от выхода блока подготовки воздуха до стабилизатора w Рис. 3.3 Специальная аппаратура для экспериментального исследования: а - переменная емкость; б - дроссель диаметром 0,1 мм; в - контрольные течи: 1 - цилиндр; 2 - крышка; 3 - поршень; 4 - фиксатор объема; 5 -входной штуцер; 6 - выходной штуцер; 7 - цанговый зажим; 8 - трубка сменная (внутренний диаметр 0,1 мм) давления на входе экспериментальной установки составляла не более 1,5 м. 2. При испытаниях обеспечивалась стабилизация пробного газа (сжатого воздуха) от колебания сетевого давления. 3. Загрязненность пробного газа не превышала требований 1 класса по ГОСТ 17433-80. 4. Установка величины испытательного давления, подаваемого на модели схем и устройства контроля герметичности, производилась регулировочным винтом стабилизатора давления экспериментальной установки. 5. Измерение величины испытательного давления на входе моделей схем и устройства контроля герметичности осуществлялась образцовыми манометрами класса 0.4 с пределами измерения 0... 1; 0... 1,6; 0...4 кгс/см. 6. Измерение давления в эталонной и измерительной линиях моделей схем и устройства контроля герметичности осуществлялось образцовыми манометрами класса 0.4 с пределами измерения 0...1; 0...1,6; 0...4 кгс/см и жидкостным микроманометром с относительной погрешностью измерения 2 %. 7. В исследованиях при среднем (до 1,5 кгс/см «0,15 МПа) и высоком испытательном давлении (до 4,0 кгс/см « 0,4 МПа) задание требуемой утечки осуществлялось посредством регулируемых дросселей, предварительно оттарированных по ротаметру с относительной погрешностью измерения 2,5 %. 8. В исследованиях при низком испытательном давлении (до 0,3 кгс/см" « ЗОкПа) задание требуемой утечки осуществлялось посредством контрольных течей, изготовленных в виде металлических щелевых капилляров из латуни марки Л63 (рис. 3.3, в). Капилляры были получены сверлением отверстия диаметром 1мм и последующим сплющиванием концевого участка длиной «20 мм. Тарировка контрольных течей осуществлялась воздухом при давлении 15 кПа посредством вольюметрического устройства с относительной погрешностью 2 %. 9. Задание пневматической емкости эталонной и измерительной линий схем контроля герметичности осуществлялось посредством набора постоянных емкостей, а установка равных емкостей в линиях - посредством переменных (регули 81 руемых) емкостей. 10. Измерение перепада давления между линиями в модели контрольного устройства осуществлялось дифференциальным манометрическим датчиком с относительной погрешностью измерения 2 % и пределами измерения 0...25 кПа и 0...40 кПа. 11. При снятии временных характеристик отсчет времени осуществлялся по электронному секундомеру с относительной погрешностью измерения 0,5 %. 12. Измерения соответствующих параметров (ри, Ар, I) для каждой исследуемой характеристики или параметра модели схемы или устройства контроля герметичности проводились с повторением отсчетов не менее 5 раз. 13. Обработка результатов каждого эксперимента осуществлялась нахождением средних значений параметров для каждого опыта. По полученным данным строились соответствующие характеристики. Описание пунктов методики исследования отдельных характеристик приведены в соответствующих разделах данной главы. Исследование характеристики р = /(/) линий схемы контроля герметичности Для проверки принятой математической модели (2.48) и работоспособности схемы контроля герметичности, выполненной на основе способа сравнения с непрерывной подачей испытательного давления был проведен эксперимент по определению характеристики р = f(J) - изменения давления в ее линиях за времяконтроля при высоком и низком испытательном давлении, которые используются при контроле герметичности в различной газовой арматуре. В разделе 2.3.1 было показано, что данная схема контроля содержит две линии, каждую из которых можно представить в виде проточной емкости. В исследовании использовалась экспериментальная установка, приведенная на рис. 3.2, а также рекомендации главы 2, что все параметры измерительной и эталонной линий схемы должны быть равны, поэтому эксперимент проводился только с измерительной линией. Для этого вентили 15, подсоединяющие эталонную линию к источнику испытательного давления и измерительную линию - к дифференциальному манометрическому устройству 14, были перекрыты.

Для определения характеристики р = /(/) проточной емкости линии при вы ч соком испытательном давлении использовался образцовый манометр 8 с верхним пределом измерения 4,0 кгс/см (400 кПа) класс 0.4 и электронный секундомер. В эксперименте были заданы следующие параметры: испытательное давление/?о=400 кПа; величина утечки воздуха У = 1,16-10-5 м3/с; суммарный объемпроточной емкости и пневматических каналов V «0,5дм3. Величина утечки воздуха У устанавливалась оттарированным по ротаметру переменным дросселем 10 типа П2Д.1М, при этом контрольная течь 9 была перекрыта вентилем 15. В интервале интенсивного нарастания давления показания манометра 8 снимались через 10 с. Для построения экспериментальной характеристики р = /(/) в качестве значений изменения давления были приняты среднеарифметические значения из пяти опытов.

Рекомендации по проектированию автоматизированного оборудования...

Рассмотрим основные этапы технического проектирования автоматизированного оборудования для контроля герметичности. На первом этапе осуществляется технологический анализ номенклатуры и объема партии изделий. При этом следует учитывать, что количество изделий в партии должно быть достаточно большим (по возможности, соответствовать среднесерийному и крупносерийному производству), чтобы обеспечить необходимую загрузку проектируемого контрольного оборудования без его переналадки. Если производство многономенклатурное, а объем партии мал, то рекомендуется изделия различных производственных партий и типов объединять в группы по общим техническим условиям на контроль герметичности, что позволяет использовать единую схему контроля и контрольно-измерительную аппаратуру, а также группировать по сходным конструкциям корпусов изделий и их входных каналов, что позволяет применять при проектировании общие уплотнительные элементы, загрузочные и фиксирующие устройства. Здесь же необходимо проанализировать пригодность конструкций изделий и требований технических условий на их испытания на герметичность для автоматизации данной операции. Рациональное группирование изделий позволяет проектировать оборудование с максимальной производительностью и минимальной переналадкой на контроль различных типов изделий. Например, средства пневмоавтоматики высокого давления можно группировать по одинаковым ТУ на контроль утечки сжатого воздуха (по величине испытательного давления 0,63 МПа и 1,0 МПа, а также одинаковой допустимой утечке), по сходной конструкции входного пневмоканала, что позволяет использовать в разрабатываемом оборудовании в первом случае общий контрольный блок, а во втором - одинаковое уплотняющее устройство (торцевое или внутреннее манжетное). Этот этап завершается определением производительности проектируемого оборудования, пример расчета которого рассмотрен в разделе

На втором этапе проектирования определяется необходимость переналадки проектируемого устройства, которая должна предусматривать: возможность системы управления функционировать с учетом различного времени испытания из делий под давлением; перенастройку контрольно-измерительного блока на различные допустимые величины утечки пробного газа, а также на различные уровни испытательного давления. Затем следует осуществить выбор способа контроля и средств его реализации. Предварительно технические условия на проведение контроля герметичности должны быть рассмотрены при анализе технического задания. Здесь, как правило, предпочтение следует отдавать типовым, широкопредельным контрольно-измерительным устройствам. Но в отдельных случаях рекомендуется разработка специального контрольного блока, который в полной мере соответствует требованиям проектируемого автомата или полуавтомата, например, по требованию к переналаживаемости устройств, диапазону испытательного давления . Примеры расчета и применения контрольного оборудования рассмотрены в разделах 4.3 и 4.4.

На третьем этапе проектирования выбирается уровень автоматизации и переналаживаемости всего устройства. К автоматам для испытания на герметичность относятся устройства, которые осуществляют весь процесс контроля герметичности, включая разбраковку, а также загрузку - разгрузку изделий без участия оператора . К автоматизированным устройствам (полуавтоматам) для контроля герметичности относятся устройства, в работе которых участвует оператор. Он может осуществлять, например, загрузку - разгрузку испытуемого изделия, разбраковку на "Годные" и "Брак" по информации контрольно-измерительного блока, снабженного автоматическим регистрирующим элементом. При этом общее управление устройством, включая привод транспортного приспособления, зажим - разжим (фиксация), уплотнение изделия, выдержка времени контроля и другие функции осуществляются автоматически. Перспективные схемы автоматизации контроля герметичности по манометрическому методу рассмотрены в разделе 4.2.

После оценки уровня автоматизации следующей важной задачей является выбор и анализ компоновочной схемы, которую следует вычертить в масштабе. Она позволяет рационально скомпоновать все устройства проектируемого оборудования. Здесь особое внимание следует уделить выбору позиции загрузки - разгрузки изделия, траектории перемещения загрузочного оборудования. Проблемы связаны с тем, что загружаемые изделия (объекты испытания), как правило, имеют сложную пространственную конфигурацию, поэтому трудно ориентируются, захватываются и удерживаются. Из-за этого требуется создание специального ориентирующего и загрузочно-разгрузочного оборудования, что не всегда приемлемо по экономическим причинам, поэтому ручная загрузка может оказаться рациональным решением. Как адекватное решение вопроса, рекомендуется рассматривать применение промышленных манипуляторов и роботов . Примеры выбора и расчета параметров некоторого вспомогательного оборудования приведены в разделе

Следующим важным этапом проектирования является выбор системы управления и синтез схемы управления. Здесь следует придерживаться рекомендаций и методик разработки систем управления технологическим оборудованием, приведенных в литературе . Выбор схемы подготовки воздуха является достаточно простым, так как хорошо технически проработан и освещен в литературе . Но недооценка важности этого вопроса может привести к повышенной загрязненности сжатого воздуха (механическими примесями, водой или маслом), используемого в качестве пробного газа, что серьезно повлияет на точность контроля и надежность работы оборудования в целом. Требования к воздуху, используемому в пневматических контрольно-измерительных устройствах, изложены в ГОСТ 11662-80 "Воздух для питания пневматических приборов и средств автоматизации1 . При этом класс загрязненности должен быть не ниже второго по ГОСТ 17433-80.

При выборе схемы подачи испытательного давления следует учитывать обязательную его стабилизацию с высокой точностью, необходимость подключения к поворотному тактовому столу или другому перемещающемуся оборудованию, а также одновременное питание большого количества блоков контроля. Эти вопросы рассмотрены на примере автоматизированного стенда для контроля герметичности в разделе 4.4.

На завершающем этапе осуществляется экспертная оценка проекта автоматизированного устройства для контроля герметичности. Здесь целесообразно давать оценку проекту коллегиально, по определенным критериям, с привлечением специалистов подразделения, где предполагается внедрение разрабатываемого устройства. Затем проводится экономическая оценка проекта. На основании сделанных заключений принимаются окончательные решения о дальнейшей разработке рабочей документации, создании и внедрении автоматического или автоматизированного устройства для контроля герметичности по данному проекту.

Кавалеров, Борис Владимирович

Одним из способов решения проблемы автоматизации контроля герметичности полых изделий, например, запорных кранов, является разработка многопозиционного переналаживаемого стенда, для автоматического контроля герметичности изделий сжатым воздухом, по манометрическому методу. Существует множество конструкций таких устройств. Известен автомат контроля герметичности изделий, содержащий стол с приводом, упругий уплотнительный элемент, бракующее устройство, источник сжатого газа, копир и устройство для зажима изделия.

Однако автоматизация процесса достигается за счет значительной сложности конструкции автомата, что снижает надежность его работы.

Известен автомат для контроля герметичности полых изделий, содержащий уплотнительные узлы с датчиками утечки, систему подачи испытательного газа механизмы перемещения изделий и механизма отбраковки.

Недостатком указанного автомата является сложность технологического процесса контроля герметичности изделий и невысокая производительность.

Наиболее близким к изобретению является стенд для испытания изделий на герметичность, содержащий ротор, привод его шагового перемещений, размещенные на роторе контрольные блоки, каждый из которых содержит элемент сравнения, соединенный с бракующим элементом, элемент герметизации изделия, содержащий выходную трубку и привод его перемещения, который выполнен в виде копира с возможностью взаимодействия с выходной трубкой.

Однако это устройство не позволяет увеличить производительность, так как при этом снижается надежность испытания изделий.

На рисунке 1.6 приведено автоматизированное устройство для испытания на герметичность на основе камерного способа. Оно состоит из камеры 1, в полости которой размещено контролируемое изделие 2, соединенное с блоком 3 подготовки воздуха через отсечной вентиль 4, мембранного разделителя 5 с мембраной 6 и полостями А и Б, струйного элемента ИЛИ-НЕ ИЛИ 7. Полость А мембранного разделителя 5 соединена с полостью камеры 1, а полость Б через сопло 8 - с выходом 9 ИЛИ струйного элемента 7. К другому его выходу 10 НЕ ИЛИ подсоединен пневмоусилитель 11 с пневмолампой 12. Полость Б дополнительно соединена каналом 13 с управляющим входом 14 струйного элемента 7, атмосферные каналы 15 которого снабжены заглушками 16.

Устройство работает следующим образом. В контролируемое изделие 2 подается давление от блока 3 подготовки воздуха, которое при достижении испытательного уровня отсекается вентилем 4. Одновременно при подаче питания в струйный элемент 7 струя воздуха через выход 9 ИЛИ и сопло 8 проходит в полость Б мембранного разделителя 5 и через канал 13 - на управляющий вход 14 струйного элемента 7. Таким образом, при отсутствии утечки из контролируемого изделия 2 струйный элемент 7 находится в устойчивом состоянии под действием его же выходной струи. При наличии утечки из изделия 2 во внутренней полости камеры 1 происходит повышение давления. Под действием этого давления мембрана 6 прогибается и перекрывает сопло 8. Давление струи воздуха в выходе 9 струйного элемента 7 увеличивается. Одновременно пропадает струя на управляющем входе 14, а так как струйный элемент ИЛИ - НЕ ИЛИ является моностабильным элементом, то он переключается в свое устойчивое состояние, когда струя выходит через выход 10 НЕ ИЛИ. При этом срабатывает усилитель 11 и пневмолампа 12 сигнализирует о негерметичности изделия 2. Этот же сигнал может быть подан в струйную систему управления разбраковкой .

Данное устройство построено на элементах струйной пневмоавтоматики, что обеспечивает повышение его чувствительности. Еще одним достоинством устройства является простота конструкции и удобство настройки. Устройство может применяться для контроля герметичности газовой арматуры компрессионным способам при низком испытательном давлении, если мембранный разделитель использовать как датчик, соединенный непосредственно с контролируемым изделием. При этом наличие ненормативной утечки можно контролировать по размыканию мембраны и сопла.

Рисунок 1.6 ? Устройство для испытания на герметичность

На рисунке 1.8 приведено устройство, обеспечивающее автоматизацию контроля герметичности пневмоаппаратуры , например, электропневмоклапанов, то есть изделий аналогичных рассматриваемой в диссертации газовой арматуре.

Испытуемое изделие 1 соединено с источником 2 давления, электромагнитный байпасный клапан 3 установлен между выходом 4 изделия 1 и выхлопной линией 5. Электромагнитный отсечной клапан 6 своим входом 7 соединяется в процессе испытания с выходом 4 изделия 1, а выходом 8 - с пневматическим входом 9 преобразователя 10 системы 11 измерения утечки, который выполнен в виде теплового расходомера. Система 11 содержит также вторичный блок 12, подключенный к управляющему входу 13 преобразователя 10, пневматический выход 14 которого соединен с выхлопной линией 5. Блок 15 управления клапанами содержит мультивибратор 16 и блок 17 задержки и формирования импульсов. Одним выходом мультивибратор 16 подсоединен к управляющему входу 18 отсечного клапана 6, другим - к управляющему входу 19 клапана 3 и блоку 17. подсоединяемому в процессе контроля к приводу 20 испытуемого изделия 1. Тарировочная линия 21 состоит из регулируемого дросселя 22 и запорного вентиля 23. Она включена параллельно изделию 1 и служит для настройки устройства.

Контроль утечки осуществляется следующим образом. При включении блока 15 управления клапанами на выходе мультивибратора 16 появляется импульс, который открывает клапан 3 и блок 17 задержки и формирования импульсов. Этот же импульс открывает через установленное время задержки испытуемое изделие 1 путем подачи электрического сигнала с блока 17 на привод 20. При этом пробный газ стравливается через клапан 3 в выхлопную линию 5. Через задаваемое мультивибратором 16 время импульс снимается с клапана 3, закрывая его, и подается на вход 18 отсечного клапана 6, открывая его. При этом газ, наличие которого обусловленно утечкой из изделия 1, попадает в систему 11 измерения утечки и, проходя через нее, вырабатывает в преобразователе 10 электрический сигнал, пропорциональный расходу газа. Этот сигнал поступает во вторичный блок 12 системы измерения утечки, в котором он корректируется, и регистрируется величина протекания газа через закрытое испытуемое изделие 1. Через задаваемое мультивибратором время, необходимое для выхода системы измерения утечки на стационарный режим, цикл испытания повторяется.

К недостаткам данного устройства относится следующее. Устройство предназначено для контроля герметичности газовой арматуры только одного типа, снабженного электромагнитным приводом. Одновременно контролируется только одно изделие, то есть процесс малопроизводительный.

На рисунке 1.8 приведена схема автоматизированного устройства для контроля утечек газа компрессионным способом с пневмо-акустическим измерительным преобразователем . Устройство состоит из промежуточных блоков и, обеспечивающих контроль больших утечек (более 1 /мин) и пневмо-акустического блока для контроля малых величин утечек (0,005…1) /мин. Пневмо-акустический блок преобразователя имеет две усилительные манометрические ступени, состоящие из микроманометров 1, 2 и акустико-пневматических элементов 3, 4, связанные между собой через распределительный элемент 5. Запись результатов измерения осуществляется вторичным прибором 6 типа ЭПП-09, соединенным с блоком через распределитель 7. Контролируемое изделие 8 подключается к источнику испытательного давления через отсечной клапан К4. Работа устройства осуществляется в непрерывно-дискретном автоматическом режиме, что обеспечивается логическим блоком 9 управления и клапанами -. Контролируемое изделие 8 при помощи блока 9 последовательно подключается к блокам и, соответствующим включением клапанов и, где определяется предварительная величина утечки пробного газа. В случае малого значения утечки (менее 1 /мин) изделие подключается посредством клапана к пневмо-акустическому блоку, где окончательно определяется величина утечки, которая фиксируется вторичным прибором 6. Устройство обеспечивает контроль газовых утечек с погрешностью не более ±1,5 %. Давление питания и элемента трубка - трубка в блоке 1800 Па.

Данное устройство может быть применено для автоматического контроля газовой арматуры с широким диапазоном допустимых утечек газа. Недостатками устройства являются сложность конструкции из-за большого количества измерительных блоков, а также одновременный контроль только одного изделия, что существенно снижает производительность процесса.

Рисунок 1.8 Автоматизированное устройство для контроля утечек газа компрессионным способом.

Перспективными для контроля герметичности газовой арматуры являются устройства, обеспечивающие одновременное испытание нескольких изделий. Примером таких устройств является автомат для контроля герметичности полых изделий, приведенный на рисунок 1.14 . Он содержит раму 1, закрепленную на стойках 2 и закрытую кожухом 3, а также поворотный стол 4 с приводом 5. Поворотный стол снабжен планшайбой 6, на которой равномерно расположены восемь гнезд 7 под изделия 8. Гнезда 7 выполнены съемными и имеют вырезы 9. Уплотнительные узлы 10 закреплены на раме 1 с шагом в два раза большим шага гнезд 7 на планшайбе 6. Каждый уплотнительный узел 10 содержит пневмоцилиндр 11 для перемещения изделия 8 из гнезда 7 в уплотнительный узел и обратно, на штоке 12 которого установлен кронштейн 13 с уплотнительной прокладкой 14. Кроме того, уплотнительный узел 10 содержит головку 15 с уплотнительным элементом 16, которая сообщена посредством пневмоканалов с блоком 17 подготовки воздуха и с датчиком 18 утечки, который представляет собой мембранный датчик давления с электроконтактами. Механизм 19 отбраковки установлен на раме 1 и состоит из поворотного рычага 20 и пневмоцилиндра 21, шток которого шарнирно связан с рычагом 20. Годные и отбракованные изделия собираются в соответствующие бункеры. Автомат имеет систему управления, текущая информация о его работе отображается на табло 22.

Автомат работает следующим образом. Контролируемое изделие 8 устанавливается на позиции загрузки в гнездо 7 на планшайбе 6 поворотного стола 4. Привод 5 осуществляет шаговый поворот стола на 1/8 полного оборота с определенными временными интервалами. Для контроля герметичности посредством срабатывания пневмоцилиндра 11 одного из уплотнительных узлов 10 изделие 8 поднимается в кронштейне 13 и прижимается к уплотнительному элементу 16 головки 15. После этого от пневмосистемы подается испытательное давление, которое затем отсекается. Падение давления в изделии 8 регистрируется датчиком 18 утечки через определенное время контроля, которое задается шагом стола 4. Остановка стола 4 служит сигналом, разрешающим осуществление соответствующей операции на позициях I - VIII во время выстоя стола. Таким образом, при повороте стола на один шаг на каждой из его позиций осуществляются одна из следующих операций: загрузка изделия; подъем изделия к уплотнительному узлу; контроль герметичности; опускание изделия в гнездо на планшайбе; разгрузка годных изделий; удаление бракованных изделий. Последние поступают на позицию VIII, при этом рычаг 20 под действием штока пневмоцилиндра 21 поворачивается в шарнире, и своим нижним концом проходит через вырез 9 гнезда 7, удаляя изделие 8, которое под собственным весом падает в бункер. Аналогично разгружаются годные изделия на позиции VII (разгрузочное устройство не показано).

Недостатками устройства являются: необходимость подъема изделия с планшайбы в уплотнительный узел для контроля герметичности; использование в качестве датчика утечки мембранного преобразователя давления с электрическими контактами, имеющего низкие точностные характеристики по сравнению с другими типами датчиков давления.

Проведенные исследования показали, что одним из перспективных путей совершенствования манометрического метода контроля герметичности является совместное применение мостовых измерительных схем и различных преобразователей дифференциального типа.

Пневматическая мостовая измерительная схема для устройств контроля герметичности строится на двух делителях давления (рис. 1.9).

Рис.1.9

Первый делитель давления состоит из постоянного дросселя fli и регулируемого дросселя Д2. Второй - состоит из постоянного дросселя Дз и объекта контроля, который условно также можно считать дросселем Д4. Одна диагональ моста связана с источником испытательного давления рк и атмосферой, вторая диагональ - измерительная, в неё подключается преобразователь ПД. Для подбора параметров элементов и настройки мостовой схемы, состоящей из ламинарных, турбулентных и смешанных дросселей используется зависимость:

где R1 R2,R3, R4 - гидравлические сопротивления элементов Д1, Д2, Д3, Д4 соответственно.

Учитывая данную зависимость, возможность применения как уравновешенной, так и неуравновешенной мостовой схемы, а также то, что гидравлическое сопротивление подводящих каналов мало по сравнению с сопротивлением дросселей и поэтому им можно пренебречь, то на основе приведенной пневматической мостовой схемы можно строить устройства для контроля герметичности различных объектов. При этом процесс контроля легко автоматизируется. Повысить чувствительность устройства можно за счет применения ненагруженных мостовых схем, т.е. устанавливать в измерительной диагонали преобразователи имеющие R =. Используя формулы для расхода газа при докритическом режиме получим зависимости для определения давления в междроссельных камерах ненагруженного моста.

Для первой (верхней) ветви моста:

для второй (нижней) ветви моста:

где S1, S2, S3, S4 - площади проходного сечения канала соответствующего дросселя; Рв, Рн - давление в междроссельной камере верхней и нижней ветви моста, рк - испытательное давление.

Разделив (2) на (3) получим

Из зависимости (4) следует ряд преимуществ применения мостовой схемы в устройствах для контроля герметичности по манометрическому методу: отношение давлений в междроссельных камерах не зависит от испытатель...

Рассмотрим принципиальные схемы устройств, обеспечивающих контроль герметичности по манометрическому методу, которые можно строить на основе пневматических мостов и различных типов дифференциальных преобразователей давления в электрический и другие виды выходных сигналов.

На рис. 1.10 приведена схема контрольного устройства, в котором в измерительной диагонали моста применен водяной дифманометр.

Рисунок1.10 Схема контрольного устройства с измерительной диагональю моста - водяной дифманометр

Испытательное давление рк через постоянные дроссели подается в две линии. Одна линия - правая является измерительной, давление в ней меняется в зависимости от величины утечки в контролируемом объекте 4. Вторая линия - левая обеспечивает опорное противодавление, величина которого устанавливается регулируемым дросселем 2. В качестве этого элемента могут использоваться типовые устройства: конус - конус, конус - цилиндр и др. Обе линии подключены к дифманометру 5, в котором разность высот столбов жидкости h является мерой перепада давленияр в линиях и одновременно позволяет судить о величине утечки, т.к. пропорциональна ей:

Автоматизировать процесс считывания показаний водяного дифманометра можно за счет применения фотоэлектрических датчиков, волоконно-оптических преобразователей, оптоэлектронных датчиков. В этом случае водяной столб может быть использован как цилиндрическая линза, фокусирующая световой поток, а при отсутствии воды - рассеять его. Кроме того, для облегчения считывания показаний вода может быть подкрашена и служить препятствием для светового потока.

Это устройство обеспечивает измерение величины утечки с высокой точностью, а поэтому может использоваться для градуировки других контрольно-измерительных устройств и аттестации контрольных течей.

На рис. 1.11 приведено устройство для измерения утечки в объекте 4, в котором в измерительной диагонали моста применен струйный пропорциональный усилитель 5. Испытательное давление рк через постоянные дроссели 1 и 3 подается в линию противодавления и измерительную линию, подключенные к соответствующим управляющим входам усилителя. Под действием давления струи, выходящей из усилителя, отклоняется стрелка 6, нагруженная пружиной 7. Отклонение стрелки соответствует величине утечки. Отсчет осуществляется по проградуированной шкале 8. В устройстве может быть предусмотрена пара замыкающих электрических контактов, которые срабатывают при утечке превышающей допустимую. Применение струйного пропорционального усилителя облегчает настройку устройства на заданный уровень утечки, повышает точность контроля.

Рисунок 1.11 Схема контрольного устройства со струйным пропорциональным усилителем

Однако учитывая, что усилитель имеет гидравлическое сопротивление Ry0 , то мостовая схема оказывается нагруженной, что понижает её чувствительность. В этом случае в качестве регулируемого настроечного дросселя 2 целесообразно применение барботажного резервуара 9, наполненного водой и трубки 10, один конец которой подключен к дросселю 1, образуя с ним линию противодавления, а второй конец имеет выход в атмосферу и погружен в резервуар. Независимо от величины испытательного давления рк в трубке 10 установится давление рп, которое определяется зависимостью:

где h - высота столба воды, вытесненной из трубки.

Таким образом, регулировка противодавления в мостовой схеме осуществляется путем установки соответствующей h и глубиной погружения трубки. Такое устройство регулируемого дросселя обеспечивает высокую точность задания и поддержания противодавления. Кроме того, он практически является безрасходным. Однако регулировочные дроссели такого типа могут применяться в схемах, работающих на низком давлении (до 5-10 кПа) и преимущественно в лабораторных условиях.

Применение в устройствах контроля герметичности мостовых схем с пневмоэлектрическими мембранными преобразователями обеспечивает им функционирование в широком диапазоне давлений рк с достаточной точностью. Схема такого контрольного устройства представлена на рис. 1.12.

Оно состоит из постоянных дросселей 1 и 3, а также регулируемо го дросселя 2. В измерительную диагональ моста подключен мембранный преобразователь 5, при этом одна его камера соединена с измерительной линией моста, а вторая - с линией противодавления. В начале процесса контроля герметичности объекта 4 мембрана б находится в положении покоя, уравновешенная давлениями в междроссельных камерах моста, что фиксируется замыканием правой пары электрических контактов 7. При негерметичности объекта, т.е. при появлении утечки возникнет разность давлений в камерах преобразователя, мембрана прогнется и контакты 7 разомкнутся. При появлении утечки больше допустимой, величина прогиба мембраны обеспечит замыкание левой пары электрических контактов 8, что будет соответствовать бракованному изделию.

Рисунок 1.12 Схема контрольного устройства с пневматическим мембранным преобразователем

Связь между ходом мембраны и разностью давлений в камерах при отсутствии жесткого центра и малом прогибе устанавливается зависимостью:

где r-радиус мембраны, Е- модуль упругости материала мембраны,

Толщина мембраны

Учитывая зависимость и утечки У по формуле,зависимость можно выбирать конструктивные элементы и рабочие параметры данного преобразователя.

Преобразователи с плоскими мембранами кроме электрических контактов могут использоваться совместно с индуктивными, ёмкостными, пьезоэлектрическими, магнитоупругими, пневматическими, тензометрическими и другими выходными преобразователями малых перемещений, что является их большим достоинством. Кроме того, преимуществами преобразователей давления с плоскими мембранами является конструктивная простота и высокие динамические свойства.

На рис. 1.13 приведена схема устройства предназначенного для контроля герметичности при малых и средних испытательных давлениях.

Рисунок 1.13 Схема контрольного устройства с двухвходовым трехмембранным усилителем

Здесь в пневматическом мосту, состоящем из постоянных дросселей 1 и 3, регулируемого дросселя 2 в измерительной диагонали применен элемент сравнения 5, выполненный на двухвходовом трехмембранном усилителе УСЭППА типа П2ЭС.1, глухая камера А которого соединена с линией противодавления, а глухая камера Б - соединена с измерительной линией. Выход элемента сравнения подключен к индикатору или пневмоэлектропреобразователю 6. Питание элемента сравнения осуществляется отдельно от моста и более высоким давлением. С помощью регулируемого дросселя 2 задается перепад давления между измерительной линией и линией противодавления пропорциональный максимально допустимой утечке. Если при осуществлении контроля величина утечки через объект 4 будет меньше допустимой, то давление ри в измерительной линии будет выше, чем противодавление рп, и сигнал на выходе элемента сравнения будет отсутствовать. Если величина утечки превышает допустимую, то давление в измерительной линии станет меньше противодавления, что приведет к переключению элемента сравнения и на его выходе появится высокое давление, это заставит сработать индикатор или пневмоэлектропреобразователь. Работу данной схемы можно описать следующими неравенствами. Для объектов контроля с допустимой величиной утечки:

Для объектов контроля с утечкой превышающей допустимую:

Данное устройство может быть использовано в автоматизированных стендах для контроля герметичности запорной арматуры. Дополнительным достоинством является простота реализации конструкции на типовых элементах пневмоавтоматики.

На рис. 1.14 приведено устройство для измерения и контроля утечки в объекте 4, в котором в измерительную диагональ моста подключен дифференциальный сильфонный преобразователь 5. Испытательное давление рк через постоянный дроссель 1 подается в сильфон б линии противодавления, а через постоянный дроссель 3-е сильфон 7 измерительной линии. Величина давления, соответствующая допустимой утечке задается регулируемым дросселем 2.

Сильфоны 6 и 7 соединены между собой рамкой, на которой закреплена система индикации, состоящая из стрелки 8 со шкалой 9 и пары регулируемых замыкающих электрических контактов 10. Настройка устройства осуществляется в соответствии с зависимостью:

Рисунок 1.14 Схема контрольного устройства с дифференциальным мембранным преобразователем

В случае появления утечки давление ри в сильфоне 7 начинает уменьшаться, и он сжимается, а сильфон 6 будет растягиваться, т.к. рп остается постоянным, при этом начнет перемещаться рамка и стрелка покажет величину утечки. Если утечка превысит допустимую, то соответствующее перемещение сильфонов замкнет электрические контакты 10, которые выдадут сигнал о браке объекта контроля.

Данное устройство может функционировать при среднем и высоком испытательном давлении. Оно может быть применено в автоматизированных стендах для контроля герметичности запорной арматуры высокого давления, где допускаются сравнительно высокие величины утечки и требуется измерение их абсолютных величин.

  • 1. Применение пневматических мостовых схем совместно с различными типами дифференциальных преобразователей существенно расширяет возможности применения манометрического метода для автоматизации контроля герметичности.
  • 2. Автоматизированные устройства для контроля герметичности на основе мостовых схем можно реализовывать на типовых логических элементах, а также серийных дифференциальных датчиках, применяемых для контроля различных технологических величин, что значительно ускоряет их создание и снижает стоимость.

Государственный комитет СССР по надзору

за безопасным ведением работ в атомной энергетике

ПРАВИЛА И НОРМЫ В АТОМНОЙ ЭНЕРГЕТИКЕ

УНИФИЦИРОВАННАЯ МЕТОДИКА КОНТРОЛЯ ОСНОВНЫХ МАТЕРИАЛОВ (ПОЛУФАБРИКАТОВ), СВАРНЫХ СОЕДИНЕНИЙ И НАПЛАВКИ ОБОРУДОВАНИЯ И ТРУБОПРОВОДОВ АЭУ

Контроль герметичности.
Газовые методы.
ПНАЭ Г-7-019-89

1. ОБЩИЕ ПОЛОЖЕНИЯ

1.1. Контроль герметичности конструкций и их узлов проводится в целях выявления течей, обусловленных наличием сквозных трещин, непроваров, прожогов и т.п. в сварных соединениях и металлических материалах.
1.2. Контроль герметичности основан на применении пробных веществ и регистрации их проникновения через течи в конструкции при помощи различных приборов - течеискателей и других средств регистрации пробного вещества.
1.3. В зависимости от свойств пробного вещества и принципа его регистрации контроль проводится газовыми или жидкостными методами, каждый из которых включает в себя ряд способов, различающихся технологией реализации данного принципа регистрации пробного вещества. При этом в зависимости от применяемого способа при контроле герметичности определяется место расположения течи или суммарное натекание (степень негерметичности). Перечень применяемых методов и способов контроля приведен в Таб.1
1.4. Величина течи или суммарного натекания оценивается потоком воздуха через течь или все течи, имеющиеся в изделии, при нормальных условиях из атмосферы в вакуум. Соотношения единиц измерения потока приведены в справочном Приложение 1.
1.5. Под системой контроля понимается сочетание определенных способа и режимов контроля и способа подготовки изделия к контролю.
1.6. Пороговая чувствительность системы контроля характеризуется величиной минимальных выявляемых течей или суммарного натекания.

2. КЛАССИФИКАЦИЯ И ВЫБОР СИСТЕМ КОНТРОЛЯ ГЕРМЕТИЧНОСТИ

2.1. Все системы контроля по чувствительности разделены на пять классов герметичности, приведенных в табл. 2.
2.2. Класс герметичности устанавливается проектной (конструкторской) организацией в соответствии с требованиями действующих Правил контроля в зависимости от назначения, условий работы изделия и выполнимости способов контроля и подготовки, отнесенных к данному классу, и указывается в конструкторской документации.
2.3. Выбор конкретной системы контроля определяется назначенным классом герметичности, конструкционными и технологическими особенностями изделия, а также технико-экономическими показателями контроля.
2.4. В соответствии с назначенным классом герметичности контроль проводится по технологии технологических карт контроля, в которых указаны конкретные способы контроля и подготовки изделия под контроль. В случае отступлений от требований настоящей методики документы должны быть согласованы с головной отраслевой материаловедческой организацией.

3. АППАРАТУРА И МАТЕРИАЛЫ

3.1. При испытании герметичности оборудование, приборы и материалы должны выбираться в соответствии со справочными приложениями 2 и 3. Допускается применение не указанных в приложениях отечественного и импортного оборудования, приборов и материалов, удовлетворяющих требованиям настоящего документа.
3.2. Параметры и технические характеристики оборудования, приборов и материалов, применяемых при контроле герметичности, должны соответствовать паспортным значениям, государственным стандартам и техническим условиям.
3.3. Метрологической поверке подвергаются приборы, в паспортах которых указаны объем и характер поверок. Поверки проводятся органами Госстандарта на соответствующих предприятиях. Периодичность поверок проводится в соответствии с требованиями паспорта на прибор.
3.4. Течеискатели независимо от выбранного способа контроля должны быть настроены на оптимальную чувствительность в соответствии с указаниями технического описания и инструкции по их эксплуатации.

4. ГАЗОВЫЕ МЕТОДЫ КОНТРОЛЯ ГЕРМЕТИЧНОСТИ

4.1. Требования по подготовке поверхности конструкций, подлежащих контролю герметичности газовыми методами

4.1.1. Если на поверхность изделия, сборочной единицы наносится защитное покрытие, следует проводить перед указанной операцией.
Примечание . В случае технической невозможности допускается проводить после нанесения защитных покрытий, что должно оговариватьея в производственно-технической документации (ПТД).
4.1.2. Поверхность изделий, сборочных единиц, сварных соединений изделий, подлежащих проверке на герметичность, не должна иметь следов ржавчины, масла, эмульсии и других загрязнений.
4.1.3. Органические загрязнения с доступных участков поверхности изделия следует удалять промывкой органическими растворителями с последующим кантованием изделия или барботированием залитого растворителя. Объем заливаемого растворителя должен быть не менее 100% свободного объема изделия.
4.1.4. В качестве очищающих жидкостей следует использовать спирт, ацетон, уайт-спирит, бензин, хладон-113 или другие органические растворители, обеспечивающие качественное удаление органических загрязнений.
4.1.5. После очистки растворитель следует слить и полость изделия продуть сухим чистым воздухом до полного удаления запаха растворителя.
4.1.6. Качество очистки должно быть проконтролировано протиркой контролируемой поверхности чистой белой безворсовой тканью с последующим ее осмотром. Отсутствие загрязнений на ткани свидетельствует о качественной очистке поверхности.
4.1.7. При соответствующем указании в техническом процессе качество очистки должно быть проконтролировано осмотром участка поверхности изделия или сварного соединения в лучах ультрафиолетового света, а при недопустимости поверхности для осмотра в лучах ультрафиолетового света - куска бязи после протирки им поверхности. Отсутствие светящихся пятен на контролируемой поверхности или куске бязи при освещении их ультрафиолетовым светом свидетельствует о качественной очистке поверхности.
4.1.8. Окончательную операцию подготовки - осушку поверхности изделий и полостей возможных сквозных дефектов от влаги и других жидких сред - следует проводить непосредственно перед контролем герметичности. После осушки в целях сохранения чистоты изделий работы следует проводить в чистой спецодежде (халате или спецовке) и в перчатках из бельевой ткани.
4.1.9. В качестве нагревательных средств следует использовать электропечи, индукторы, калориферы, установки, стенды для пропаривания и т.п. Для нагрева можно использовать метод электросопротивления с применением переменного или постоянного тока.
4.1.10. При осуществлении осушки без вакуумирования длительность выдержки при требуемой температуре должна быть не менее 5 мин. Температура определяется заданным классом герметичности.
4.1.11. В случае невозможности выполнения контроля герметичности изделий непосредственно после осушки хранить осушенное изделие допускается не более 5 сут. при следующих условиях:

  • контролируемые участки должны быть защищены от попадания загрязнений и жидких сред защитными материалами;
  • на поверхности контролируемого изделия не должна конденсироваться влага атмосферного воздуха. Для предотвращения явления конденсации влаги (например, при внесении изделий в помещение, температура воздуха в котором выше температуры поверхности изделия, понижении температуры воздуха в помещении, при охлаждении изделия при подаче в него пробного газа из баллона) необходимо принимать меры, руководствуясь справочными таблицами соотношений температуры окружающего воздуха, относительной и абсолютной влажности. Например, при относительной влажности воздуха 80% и температуре 20°С температура поверхности изделия не должна быть менее 17°С;
  • влажность воздуха в помещении для хранения осушенных изделий не должна превышать 80%.

4.1.12. При необходимости транспортирования изделий следует исключить возможность загрязнения и конденсации влаги на поверхности изделия.

4.2. Контроль герметичности гелиевыми течеискателями

4.2.1. Пороговая чувствительность гелиевых течеискателей и способов контроля. Рабочая шкала.

4.2.1.1. Пороговая чувствительность течеискателей характеризуется минимальным потоком пробного вещества, который течеискатель может зарегистрировать. Пороговая чувствительность гелиевых течеискателей должна быть не менее 1,3.10-10 м3* Па/с (1.10-6 л×мкм рт.ст./с). Пороговая чувствительность способа контроля характеризуется минимальным потоком или количеством пробного вещества, который фиксируется в схеме проведения контроля.
4.2.1.2. Пороговая чувствительность гелиевых течеискателей определяется в начале каждой смены по методике, приведенной в Приложение 4 .
4.2.1.3. Пороговая чувствительность способа контроля определяется после испытания изделия, партии однотипных изделий или имитатора, конструкции которого согласовывается с ГОМО по методике, приведенной в Приложение 5.
4.2.1.4. Пороговая чувствительность способов вакуумной (гелиевой) камеры и термовакуумного должна быть не ниже 6,7.10-10 м3×Па/с (5.10-6 л×мкм рт.ст./с), способов обдува гелием и гелиевого щупа - не ниже 6,7.10-9 м3×Па/с (5.10-5 л×мкм рт.ст.с).
4.2.1.5. Если пороговая чувствительность способа контроля ниже значений, указанных в п. 4.2.1.4, то изделие или партия изделий должны подвергаться повторному контролю.
4.2.1.6. Признаком наличия сквозного дефекта является увеличение показаний прибора над средними фоновыми показаниями на величину, равную разности максимального и минимального значений фона в схеме испытаний. Эта величина не должна превосходить 50 мВ для всех способов контроля (кроме способа щупа) и 100 мВ для способа щупа.

Примечания :
1. Средние фоновые показания перед началом испытания любым способом не должны быть более 2/3 рабочей шкалы.
2. Если фоновые показания превышают указанную величину, следует использовать схему компенсации фона.

4.2.2. Способ гелиевой (вакуумной камеры).

4.2.2.1. Сущность способа гелиевой или вакуумной камеры заключается в том, что контролируемое изделие помещается в герметичную металлическую камеру. К камере или изделию подсоединяется через систему вспомогательной откачки течеискатель, после чего в камеру (способ гелиевой камеры) или в изделие (способ вакуумной камеры) подается под давлением гелий. При наличии течи гелий в результате перепада давлений поступает в вакуумируемый объем, соединенный с течеискателем. Схема контроля способом вакуумной камеры приведена на Рис.1.

Рис. 1. Схема установки для контроля способом вакуумной камеры
1 - гелиевый течеискатель,
2 - натекатель,
3 - баллон с аргоном,
4 - камера,
5 - изделие,
6 - мановакуумметр,
7 - редуктор,
8 - баллон с гелием,
9 - вакуумный насос,
10 - вакуумный клапан ,
11 - калиброванная течь
4.2.2.2. При проектировании и изготовлении гелиевой (вакуумной) камеры должны учитываться следующие требования:

  • для ускорения откачки форма камеры рекомендуется цилиндрической (допускается изготовление камеры по конфигурации конструкции);
  • должна быть предусмотрена герметичность фланцевых соединений, а также герметичность места вывода из самой конструкции или технологического переходника от конструкции к баллону с гелием;
  • контролируемая конструкция не должна соприкасаться с внутренней поверхностью камеры.

4.2.2.3. Порядок проведения контроля:

  • контролируемое изделие подготавливается в соответствии с требованиями подразд. 4.1;
  • изделие помещается в металлическую камеру, внутренняя поверхность которой предварительно очищается и просушивается;
  • после уплотнения крышки камеры и установки манометра проводится откачка полости камеры (изделия) до остаточного давления 7 - 8 Па [(5-6) .10 -2 мм рт. ст.;
  • перед заполнением контролируемого изделия (камеры) гелием полость его предварительно откачивается до давления не выше 700-1400 Па (5-10 мм рт. ст.);
  • после достижения в камере (изделии) требуемого остаточного давления открывается входной клапан течеискателя и отключается система вспомогательной откачки;
  • в случае постепенного уменьшения давления в камере масс- спектрометра необходимо проводить подачу сухого азота в камеру масс-спектрометра с применением регулирующих натекателей;
  • в случае увеличения давления в камере масс-спектрометра необходимо частично приоткрыть клапан системы вспомогательной откачки или прикрыть входной клапан течеискателя;
  • в полость изделия (камеры) подается гелий или воздушно-гелиевая смесь в пропорциях, устанавливаемых технологической картой на контроль;
  • проводится выдержка изделия (камеры) под давлением.

4.2.2.4. Длительность выдержки изделия (камеры) под давлением должна быть при вакуумируемом объеме до 0,1 м3 - не менее 5 мин, от 0,1 до 0,5 м3 - не менее 10 мин, свыше 0,5 до 1,5 м3 - не менее 15 мин, свыше 1,5 до 3,5 м3 не менее 20 мин, свыше 3,5 - 40 мин.
4.2.2.6. Удалять гелий следует продуванием полости изделия (камеры) сухим сжатым воздухом или ее откачкой.
Допускается сбор удаляемого гелия для использования при последующем контроле.
4.2.2.5. При необходимости контроля участка изделия или отдельного сварного соединения на контролируемый участок или сварное соединение допускается установить локальную камеру.
Порядок контроля аналогичен указанному в п. 4.2.2.3.
Длительность выдержки под давлением устанавливается в зависимости от откачиваемого объема в соответствии с п. 4.2.2.4.
4.2.2.7. При контроле замыкающего сварного шва изделия проводится вакуумирование изделия и подача гелия в полость изделия с последующей заваркой замыкающего шва в потоке гелия. После заварки необходимо провести испытание замыкающего шва способом локальной вакуумной камеры. Длительность контроля определяется объемом камеры в соответствии с п. 4.2.2.4.
4.2.2.8. Количественную оценку суммарного потока пробного вещества через течи в изделии следует проводить по методике, изложенной в приложении 6 (справочном) .

4.2.3. Способ опрессовки гелием замкнутых оболочек.

4.2.3.1. Контроль способом опрессовки замкнутых оболочек заключается в том, что изделие или замыкающий шов помещаются в специальную камеру, в которой создается давление гелия. При наличии негерметичности в шве гелий проникает в замкнутый объем изделия. Далее проводится контроль изделия накоплением гелия в вакуумной камере, в которую помещается изделие.
4.2.3.2. Контроль герметичности замыкающего сварного шва способом опрессовки рекомендуется проводить для изделий, имеющих небольшие объемы (до 10 л) .
4.2.3.3. Контроль должен проводиться в такой последовательности:

  • изделие помещается в опрессовочную камеру и выдерживается под давлением гелия в течение определенного времени;
  • после опрессовки изделие вынимают из камеры, обдувают сжатым воздухом или азотом наружную поверхность изделия для очистки от гелия и выдерживают на воздухе 1 - 2 ч;
  • перед установкой изделия внутреннюю полость камеры, присоединенной к течеискателю, откачивают вспомогательным насосом. Фиксируют фоновые показания выходного прибора течеискателя при давлении в камере 1 - 7 Па [(1 - 5) .10 -2 мм рт. ст.] с отключенным вспомогательным насосом;
  • опрессованное гелием изделие помещают в вакуумную камеру и откачивают камеру с изделием до давления не более 1 - 7 Па, отключают вспомогательный насос и накапливают гелий в камере в течение не менее 1 ч, после чего открывают входной клапан течеискателя и фиксируют показания течеискателя.
  • Превышение сигнала выходного прибора течеискателя на 1 В и более над фоновыми показаниями является признаком течи в замыкающем шве изделия.

Примечание . С целью исключения повышенного гелиевого фона в процессе испытаний запрещается использовать камеру, в которой проводилась опрессовка изделия гелием.
4.2.3.4. Длительность опрессовки изделия гелием должна быть при давлении 1.10 6 Па (10 кгс/см2) не менее 120 ч, 2.106 Па (20 кгс/см2) не менее 50 ч, 5.105 Па (50 кгс/см2)) не менее 13 ч.

4.2.4. Способ термовакуумных испытаний.

4.2.4.1. Сущность испытаний заключается в том, что подлежащее контролю изделие нагревается в вакуумной камере до температуры 380 - 400°С при давлении внутри и снаружи изделия не выше 0,1 Па (10 -3 мм рт.ст.), а затем контролируется при подаче гелия в нагретое изделие или в камеру, в которую оно помещено.
4.2.4.2. Порядок проведения контроля:

  • изделие подготавливается к контролю в соответствии с п. 4.1.1 - 4.1.7;
  • изделие помещается в металлическую камеру;
  • камера и внутренняя полость изделия вакуумируются до давления не выше 0,1 Па (10 -3 мм рт. ст.);
  • изделие нагревается в печах или нагревательными устройствами до температуры 380 - 400°С и выдерживается при этой температуре в течение 3 - 5 мин. Темп разогрева определяется постоянным поддержанием давления в камере и изделии не выше 0,1 Па (10 -3 мм рт. ст.) и конструкцией изделия;
  • открывается входной клапан течеискателя при одновременном отключении насосной группы камеры (или изделия) .
  • Фиксируются установившиеся фоновые показания течеискателя;
  • в контролируемое изделие (или камеру) подается гелий до требуемого давления;
  • изделие (камера) выдерживается под давлением, при этом фиксируются показания течеискателя. Длительность выдержки выбирается в соответствии с п. 4.2.3.4;
  • после охлаждения до температуры не выше 50°С камера открывается.

4.2.5. Способ гелиевого щупа.

4.2.5.1. Сущность способа заключается в том, что изделие заполняется гелием или гелиево-воздушной смесью до давления выше атмосферного, после чего наружная поверхность изделия контролируется специальным щупом, соединенным металлическим или вакуумным резиновым шлангом с течеискателем. В результате перепада давления гелий проникает через имеющийся сквозной дефект и через щуп и шланг попадает в камеру масспектрометра течеискателя. Определенная конструкция насадки щупа, изготовленная в соответствии с профилем контролируемой поверхности, позволяет установить место расположения сквозного дефекта в изделии. Насадка щупа должна перекрывать проверяемый участок по ширине не менее чем на 5 мм с каждой стороны. Если ширина насадки меньше, то контроль следует проводить в несколько проходов.
Схема контроля способом гелиевого щупа приведена на рис. 2


Рис. 2. Схема установки для контроля способом щупа
1 - гелиевый течеискатель,
2 - термопарная лампа,
3 - вакуумный шланг,
4 - вакуумный насос,
5 - (Note from Webmaster: nothing for 5)
6 - изделие,
7 - щуп,
8 - мановакууметр,
9 - баллон с гелием
4.2.5.2. При контроле способом щупа используются регулируемые щупы-улавливатели с конической насадкой объемом не более 1 мм3 и расстоянием регулируемой запирающей иглы от контролируемой поверхности не более 5 мм. Одним из возможных вариантов конструкторского исполнения является щуп-улавливатель по черт. 358-00-00 и 358-01-00.
4.2.5.3. К установке для контроля способом гелиевого щупа предъявляются следующие требования:

  • все соединения установки должны быть проверены при закрытом положении щупа способом обдува;
  • часть установки, предназначенная для подачи гелия в контролируемое изделие, должна быть испытана способом гелиевого щупа при давлении гелия не менее 1,5 Р, где Р - давление гелия во время контроля;
  • в случае применения шланга из вакуумной резины для присоединения щупа к течеискателю шланг должен быть промыт для уменьшения газоотделения раствором щелочи (15%), чистой проточной водой, дистиллированной водой и осушен спиртом - ректификатом. Наружная поверхность шланга протирается касторовым маслом;
  • длина магистрали, соединяющей щуп с течеискателем, должна быть минимально. возможной. Максимальная длина магистрали определяется п. 4.2.1.4 при оценке чувствительности способа по приложению 5.

4.2.5.4. Контроль следует проводить в такой последовательности:

  • при закрытом щупе 7 (см. рис. 2) проводится откачка шланга 3 вакуумным насосом 5 в течение 15 - 20 мин;
  • щуп регулируется так, чтобы при совместной работе вспомогательного вакуумного насоса и насосов течеискателя остаточное давление, измеряемое термопарной лампой 2, установленной у фланца течеискателя, было равно 25 - 30 Па [(1,8-2,2) .10-1 мм рт. cт.]. Установление рабочего давления в шланге, соединяющем щуп с течеискателем, должно проводиться одновременно регулировкой щупа и входного клапана течеискателя;
  • в качестве вспомогательного должен использоваться насос со скоростью откачки 1 - 3 л/с. Если используется насос с большей скоростью откачки, следует прикрывать клапан 4, обеспечивая соответствующую скорость откачки;
  • подготовленное к контролю изделие после глушения отверстий и фланцевых выходов откачивается до давления не выше 700 - 1400 Па (5-10 мм рт. ст.);
  • осуществляется подача гелия и гелиево-воздушной смеси (не менее 50% гелия) в изделие до необходимого при испытаниях избыточного давления.

Иллюстрацию метода вы можете посмотреть на видеозаписи:

Примечания:
1. В случае невозможности предварительной откачки трубопроводов или изделий камерного типа допускается проводить продув полости гелием до появления его на выходе трубопровода или изделия. Появление гелия фиксируется щупом по повышению показаний прибора над фоновым на 100 мВ и выше.
2. Для получения концентрации гелия не менее 60% под давлением 0,1 МПа (1 кгс/см2) после продува полости гелием в изделие или трубопровод подают гелий до давления 0,1 МПа (1 кгс/см2) . Для получения концентрации гелия не менее 75% давление сбрасывают до атмосферного и вновь подают гелий до давления 0,1 МПа.
3. Для изделий с тупиковыми полостями, исключающими возможность продувки и вакуумирования, время выдержки для достижения необходимой концентрации гелия определяется экспериментально в каждом конкретном случае на стенде-имитаторе.
4.2.5.5. Контроль осуществляется перемещением щупа по поверхности изделия с постоянной скоростью, равной 0,10 - 0,15 м/мин:

  • при движении щуп должен находиться в непосредственном соприкосновении с контролируемой поверхностью. Удаление щупа от контролируемой поверхности на 5 мм снижает выявляемость дефектов в 10 - 15 раз;
  • контроль следует начинать с нижних участков изделия с постепенным переходом к верхним.

4.2.6. Способ обдува гелием.

4.2.6.1. Сущность способа заключается в том, что изделие, подвергаемое контролю, подключается к течеискателю, вакуумируется до давления, позволяющего полностью открыть входной клапан течеискателя, после чего наружная поверхность изделия обдувается струей гелия.
При наличии течи в изделии гелий попадает в его полость и фиксируется течеискателем.
Схема контроля способом обдува приведена на рис. 3.


Рис. 3. Схема установки для контроля способом обдува
1 - гелиевый течеискатель,
2 - натекатель,
3 - гелиевая течь ,
4 - вакуумный насос,
5 - баллон с аргоном,
6 - вакуумный клапан ,
7 - изделие,
8 - обдуватель,
9 - камера с гелием
4.2.6.2. Контроль должен проводиться в такой последовательности:

  • подготовленное в соответствии с требованиями подразд. 4.1 изделие вакуумируется до давления 7 - 8 МПа [(5 - 6) .10 -2 мм рт. ст.];
  • при открытом на изделие входном клапане течеискателя отключается система вспомогательной откачки и проводится обдувание гелием наружной поверхности изделия. Если невозможно поддержать требуемое давление в камере масс-спектрометра при отключенной системе вспомогательной откачки, разрешается проводить контроль при не полностью перекрытом или открытом клапане системы вспомогательной откачки, при этом определять чувствительность по приложению 5 следует при том же положении клапана;
  • обдув следует начинать с мест подсоединения системы вспомогательной откачки к течеискателю; затем обдувается само изделие, начиная с верхних его участков с постепенным переходом к нижним;
  • на первой стадии испытаний рекомендуется установить сильную струю гелия, охватывающую при обдуве сразу большую площадь. При обнаружении течи уменьшить струю гелия так, чтобы она слегка чувствовалась при поднесении пистолета - обдувателя к губам, и точно определить место сквозного дефекта. Скорость перемещения обдувателя по контролируемой поверхности составляет 0,10-0,15 м/мин; при контроле изделий большого объема и протяженности следует, учитывая время запаздывания сигнала, уменьшить скорость обдува;
  • при наличии больших сквозных дефектов и невозможности достижения требуемого вакуума в изделии для полного открытия входного клапана течеискателя при отключенной системе вспомогательной откачки сквозные дефекты отыскивать при включенной системе вспомогательной откачки. После обнаружения больших сквозных дефектов и их устранения проводится повторный контроль с целью нахождения дефектов с малой величиной натекания.

4.2.6.3. С целью контроля всей поверхности изделия или части его в отдельных случаях контролируемую поверхность закрывают мягким чехлом. Под чехол подают гелий в количестве, примерно равном объему пространства под чехлом.
Длительность выдержки изделия под чехлом составляет 5- 6 мин.
4.2.6.4. Способ обдува допускается применять для контроля незамкнутых элементов конструкций. Для его осуществления следует использовать вакуумные камеры-присоски, накладываемые или закрепляемые на контролируемой поверхности со стороны, противоположной обдуваемой. Одна из конструкций камер приведена на рис. 4. Режимы испытания указаны в п. 4.2.6.2.

Рис. 4. Конструкция вакуумной камеры-присоски
1- крышка,
2- корпус,
3- резиновые уплотнения,
4- конструкция,
5- трубопровод,
6- сварное соединение

4.3. Контроль герметичности галоидными течеискателями. Способ галоидного атмосферного щупа

4.3.1. Настройку течеискателей, определение и проверку пороговой чувствительности галоидных течеискателей следует проводить по калиброванным галоидным течам в соответствии с техническим описанием и инструкцией по эксплуатации прибора завода-изготовителя.
4.3.2. Сущность способа галоидного щупа заключается в том, что испытываемое изделие, предварительно отвакуумированное, наполняется хладоном или смесью хладона с воздухом до давления выше атмосферного. В результате перепада давлений хладон проникает через имеющуюся неплотность и улавливается щупом течеискателя , соединенным электрическим кабелем с измерительным блоком течеискателя.
4.3.3. Схема установки для контроля способом галоидного щупа приведена на рис. 5.


Рис. 5. Схема установки для контроля способом галоидного щупа:
1 - баллон с фреоном;
2 - редуктор;
3 - вакуумный насос;
4 - мановакуумметр;
5 - клапан;
6 - изделие;
7 - измерительный блок течеискателя;
8 - выносной щуп течеискателя
Установка для нагнетания хладона в контролируемое изделие должна быть проверена на герметичность галоидным течеискателем при давлении насыщенных паров хладона при температуре испытаний.
4.3.4. Порядок проведения контроля:

  • после глушения отверстий и фланцевых выходов проходными и глухими заглушками изделие откачивается до остаточного давления не выше 700 - 1400 Па (5 - 10 мм рт. ст.);
  • перекрытием клапана вакуумный насос отключается и хладон подается в изделие до необходимого при испытании избыточного давления;
  • в случае невозможности предварительной откачки трубопроводов допускается вытеснение воздуха хладоном с фиксацией наличия хладона на удаленном конце трубопровода. Далее хладон нагнетается в трубопровод для обеспечения концентрации хладона в трубопроводе не менее 50%;
  • для изделий камерного типа допускается нагнетание хладона без откачки изделия при условии обеспечения концентрации хладона в изделии не менее 50%;
  • контроль осуществляется перемещением выносного щупа по поверхности изделия с постоянной скоростью;
  • при движении щуп должен находиться на минимально возможном расстоянии от поверхности. Удаление щупа от контролируемой поверхности на 5 мм снижает выявляемость дефектов в 10 - 15 раз;
  • контроль следует начинать с верхних участков изделия с постепенным переходом к нижним.

4.3.5. Режимы контроля галоидными течеискателями:
скорость перемещения щупа по поверхности изделия не должна превышать 0,10 - 0,15 м/мин;
давление хладона-12 или хладона-22 должно соответствовать указаниям рабочих чертежей или технологической карты на контроль. Давление хладона в изделии должно быть ниже давления его насыщенных паров.
Примечание . Давление насыщенных паров хладона-12 и хладона - 22 в зависимости от температуры приведено в справочном приложении 7.
4.3.6. После проведения контроля хладон должен быть удален из конструкции за пределы рабочего помещения откачкой до остаточного давления 130 - 650 Па (1 - 5 мм рт. ст.). После этого должны быть проведены напуск воздуха в контролируемое изделие и повторная откачка до того же давления.
Примечание . Двукратная откачка контролируемого изделия до остаточного давления 130 - 650 Па гарантирует остаточное содержание хладона-12 не более 0,01 мг/л, а хладона-22 - не более 0,006 мг/л.

4.4. Контроль герметичности пузырьковым методом

4.4.1. Пневматический способ надувом воздуха.

4.4.1.1. Сущность способа заключается в том, что контролируемое изделие заполняется пробным газом под избыточным давлением. На наружную поверхность изделия наносится пенообразующий состав. Пробный газ в местах течей вызывает образование пузырей в пенообразующем составе (пузыри или разрывы мыльной пленки при применении мыльной эмульсии; пенные коконы или разрывы пленки при применении полимерного состава).
4.4.1.2. Порядок проведения контроля:

  • в контролируемом изделии создается требуемое избыточное давление пробного газа;
  • мягкой волосяной кистью или краскораспылителем на контролируемую поверхность изделия наносится пенообразующий состав и осуществляется визуальное наблюдение.

Примечание . Компоненты пенообразующих составов приведены в приложении 8 (справочном) .
4.4.1.3. Время наблюдения за состоянием поверхности при нанесении мыльной эмульсии составляет не более 2 - 3 мин после ее нанесения на поверхность.
4.4.1.4. При нанесении полимерного состава для выявления больших дефектов (более 1.10 -4 м 3 Па/с) осмотр следует проводить непосредственно после нанесения полимерного состава. Для выявления малых дефектов время осмотра должно быть не менее 20 мин с момента нанесения состава. Пенные коконы сохраняются в течение суток.

4.4.2. Пневмогидравлический аквариумный способ.

4.4.2.1. Сущность способа заключается в том, что изделие, которое заполнено газом под избыточным давлением, погружают в жидкость. Газ, выходящий в местах течей из изделия, вызывает образование пузырей в жидкости.
4.4.2.2. Контроль осуществляется в такой последовательности:

  • контролируемое изделие помещается в емкость;
  • в изделии создается испытательное давление пробного газа;
  • в емкость заливается жидкость до уровня не менее 100 - 150 мм над контролируемой поверхностью изделия.

4.4.2.3. Признаком течи в изделии является образование всплывающих к поверхности жидкости пузырьков воздуха, периодически образующихся на определенном участке поверхности изделия, или строчки пузырьков.

4.4.3. Пузырьковый вакуумный способ.

4.4.3.1. Сущность способа заключается в том, что перед установкой вакуумной камеры контролируемый участок конструкции смачивается пенообразующим составом, в камере создается вакуум. В местах течей образуются пузыри, коконы или разрывы пленки, видимые через прозрачный верх камеры.
4.4.3.2. Для обеспечения полного контроля всего сварного соединения вакуум-камеру устанавливают так, чтобы она не менее чем на 100 мм перекрывала предыдущий проконтролированный участок шва.
Вакуум-камера может иметь различную форму в зависимости от конструкции контролируемого изделия и вида сварного соединения. Для стыковых сварных соединений листовых конструкций изготавливаются плоские камеры, для угловых швов - угловые, для контроля кольцевых швов трубопроводов могут быть изготовлены кольцевые камеры. Один из возможных вариантов конструкционного исполнения вакуум-камеры представлен на рис. 6.


Рис. 6. Схема вакуум-камеры для контроля герметичности:
1 - резиновые уплотнения;
2 - корпус камеры;
3 - окно;
4 - вакуумный кран;
5 - течь в сварном соединении
6 - резиновые уплотнения
4.4.3.3. Контроль осуществляется в последовательности:

  • на контролируемый участок незамкнутой конструкции наносится пенообразующий состав;
  • на контролируемый участок устанавливается вакуумная камера;
  • в вакуумной камере создается давление 2,5 - 3.10 4 Па (180 - 200 мм рт. ст.);
  • время с момента нанесения состава до момента осмотра не должно превышать 10 мин;
  • визуальный осмотр контролируемого участка осуществляется через прозрачный верх камеры.

Примечание . В случае применения при контроле полимерного состава картина дефектов сохраняется в течение суток.

4.5. Контроль герметичности манометрическим методом (по падению давления)

4.5.1. Для осуществления контроля манометрическим методом изделие заполняют пробным газом под давлением выше атмосферного и выдерживают в течение определенного времени.
4.5.2. Давление и время опрессовки устанавливаются техническими условиями на изделие или конструкторской (проектной) документацией.
4.5.3. Изделие считают герметичным, если падение давления пробного газа во время выдержки под давлением не превысит норм, установленных техническими условиями или конструкторской (проектной) документацией.
4.5.4. Давление газа измеряют манометрами класса точности 1,5 - 2,5 с пределом измерения на 1/3 больше давления опрессовки. На подводящей трубе должен быть установлен запорный кран для регулирования подачи газа.
4.5.5. Количественная оценка общей негерметичности проводится по формуле

где
V - внутренний объем изделия и элементов испытательной системы, м3 ;
D R - изменение давления пробного газа за время опрессовки, Па;
t - время опрессовки, с.

Проверка герметичности затворов запорной арматуры установленной последовательно перед горелкой, производится перед розжигом горелки после проведения продувки отвода газом . Порядок проверки зависит от степени автоматизации горелки и ее тепловой мощности и определяется проектом. Проверка производится путем создания перепада давления по обе стороны от арматуры и контроля за изменением давления.

Проверка герметичности в ручном режиме (рис.109). При проверке герметичности двух запорных арматур 1,2, установленных последовательно перед горелкой, необходим контроль давления между ними. Для этого перед краном на трубопроводе безопасности 5 установлен штуцер, к которому подсоединяется манометр 4.

Порядок проведения работы:

На штуцер установить манометр (запорная арматура перед горелкой закрыта, а кран на трубопроводе безопасности открыт);

Закрыть кран на трубопроводе безопасности и если установленный манометр не покажет изменения давления, то первая по ходу газа запорная арматура герметична;

При закрытых запорных арматурах перед горелкой открыть и вновь закрыть первую из них по ходу газа. Манометр будет показывать давление газа, равное давлению в подводящем газопроводе, и если это давление не изменяется, то вторая по ходу газа запорная арматура и кран на трубопроводе безопасности герметичны. При неплотных запорных арматурах розжиг горелок воспрещается.

Проверку можно выполнить, также используя запорную арматуру на отводе, при этом появляется возможность проверки как самой арматуры на отводе, так и ПЗК защиты.

Проверка герметичности в автоматическом режиме.

Перед горелкой и на трубопроводе безопасности установлена запорная арматура с электроприводом, а вместо манометра – реле контроля герметичности (датчик давления).

Проверка производится аналогично ручному режиму режиме (рис.109), но автоматикой регулирования.

Проверка герметичности, при установке перед горелкой двойного электромагнитного клапана и блока контроля герметичности (рис.110). Контроль герметичности производится перед каждым пуском горелки. При не герметичности двойного электромагнитного клапана 1 подача газа прекращается. В не рабочем состоянииоба электромагнитных клапана закрыты.

Блок контроля герметичности 2 состоит из: электромагнитного клапана 3 , внутреннего насоса 4 и встроенного реле давления (датчика давления) 5 , которые последовательно размещены на байпасе первого по ходу газа клапана.

Перед проверкой герметичности давление газа перед двойным электромагнитным клапаном соответствует рабочему давлению (Р раб ). В начале проверки электромагнитный клапан 3 открываетсяивнутренний насос 4 создает большее давление газа (Р кон ) на участке контроля между магнитными клапанами, по сравнению с давлением газа в газопроводе отвода. При достижении величины необходимого контрольного давления насос выключается. Встроенное реле давления контролирует участок испытания и если давление не изменяется, то оба клапана двойного электромагнитного клапана герметичны.

Топки и газоходы газифицированных установок перед пуском в работу должны быть провентилированы. Время вентиляции определяется расчетом и устанавливается инструкцией, но не менее 10 минут, а для автоматизированных горелок - программой запуска (розжига).

Перед пуском газа в горелку производится проверка герметичности запорной арматуры перед горелкой. Запорная арматура на газопроводе перед горелкой открывается после розжига запального устройства.

Пуск газа после консервации, ремонта, сезонной остановки котельной или производства

Пуск газа послеконсервации, ремонта, сезонной остановки, а также первичный пуск газа после окончания монтажных работ выполняется силами предприятия-владельца или специализированной организацией (согласно договору). Включение газоиспользующего оборудования оформляется актом, подготовленным с участием представителя эксплуатационной организации.

Перед пуском газа и газовых сетей необходимо :

Произвести осмотр оборудования;

Проветрить помещение;

Произвести контрольную опрессовку газопроводов;

Снять заглушку на газопроводе;

Продуть газопроводы газом;

Взять пробу газа и убедиться в окончании продувки. Продувка - газоопасная работа и выполняется по наряду-допуску.

Остановка котельной (производств) на консервацию (в ремонт, сезонная остановка )

До остановки газоиспользующей установки для ремонта производят ее наружный осмотр в доступных местах с целью проверки технического состояния и уточнения объема работ. Отключение газоиспользующего оборудования оформляется актом, подготовленным с участием представителя эксплуатационной организации.

Порядок работы:

По инструкции производится остановка оборудования (при необходимости ГРП);

Газопроводы должны быть отключены и продуты воздухом. Отключение внутреннего газопровода производят с установкой заглушки на газопроводе за запорной арматурой. Это газоопасная работа и выполняется по наряду-допуску.

Запорная арматура на продувочных трубопроводах после отключения газопровода должна оставаться в открытом положении.

При отключении системы газоснабжения или отдельного газоиспользующего оборудования на длительный период или для ремонта потребителю рекомендуется известить поставщика не менее чем за трое суток.

Приводы запорной арматуры обесточивают (удаляют плавкие вставки) и запирают на замки, ключи от которых передают по смене, а на запорную арматуру вешают таблички с предупреждающими надписями.

Работы выполняемые при выводе из резерва газоиспользующей установки

Вывод из резервагазоиспользующей установки является газоопасной работой и выполняется по наряд-допуску или в соответствии с производственной инструкцией. Работа выполняется бригадой рабочих в составе не менее двух человек под руководством специалиста:

· снять заглушку на отводе к газоиспользующей установке

· порядок включения горелок газоиспользующих установок зависит от конструкции горелок, расположения их на газоиспользующем оборудовании, типа запального устройства, наличия и типа автоматики безопасности и регулирования.

· последовательность действий при розжиге горелок определяется в соответствии с требованиями производственной инструкции, разработанной на основании существующих норм и инструкций.

Пуск в работу газоиспользующей установки (см. рис. 96) производится по письменному распоряжению лица, ответственного за безопасную эксплуатацию объектов газопотребления, согласно производственной инструкции . Персонал должен быть заранее предупрежден ответственным за лицом о времени начала выполнения работ.

Перед растопкой котла, работающего на газе, должна быть проверена герметичность закрытия запорной арматуры перед горелками в соответствии с действующими инструкциями.

При наличии признаков загазованности помещения котельной включение электрооборудования, растопка котла, а также использование открытого огня не допускаются.

Перед пуском газанеобходимо :

При помощи газоанализатора или по запаху проверить помещение и убедиться в отсутствии загазованности;

По эксплуатационной документации убедиться в отсутствии запрета на ввод в работу;

Осмотреть положение запорной арматуры на газопроводе к установке: вся арматура, кроме кранов на продувочных трубопроводах, трубопроводах безопасности, перед контрольно-измерительными приборами и датчиками автоматики, должна быть закрыта;

Убедится в исправности оборудования для сжигания газового топлива топки, газоходов, воздуховодов, запорных и регулирующих устройств, контрольно - измерительных приборов, гарнитуры, дымососов и вентиляторов, а также проверить наличие естественной тяги;

Убедиться, что шибера на неработающих установках закрыты;

Продуть общекотельный (общецеховой) газопровод, если пускается в работу первая установка;

Включить дымосос и вентилятор, до включения дымососа для вентиляции топки и газоходов необходимо убедиться, что ротор не задевает корпуса дымососа, для чего ротор поворачивается вручную;

Пуск газа :

Открыть запорную арматуру на отводе газопровода к установке; зафиксировать, в открытом положении ПЗК защиты; приоткрыть на 10% регулирующий клапан автоматики регулирования; продуть отвод к установке, взять пробу газа из штуцера на продувочном трубопроводе;

Убедиться в отсутствии утечек газа из газопроводов, газооборудования и арматуры путем обмыливания или с помощью прибора (течеискателя);

Проверить по манометру соответствие давления газа, а при использовании горелок с принудительной подачей воздуха дополнительно - соответствие давления воздуха установленному давлению;

Провентилировать топку, газоходы и воздуховоды в течение 10-15 мин. и отрегулировать тягу растапливаемого котла, установив разрежение в верхней части топки 20-30 Па (2-3 мм вод. ст .), а на уровне газовых горелок не менее 40-50 Па (4-5 мм вод. ст. );

Закрыть воздушную заслонку;

Проверить герметичности затворов запорной арматуры, установленной перед горелкой;

При помощи переносного газоанализатора взять пробу воздуха из верхней части топки, убедиться в отсутствии в ней газа.

Розжиг газовых горелок.

Розжиг газовых горелок необходимо производить не менее чем двум операторам.

Ручной розжиг горелок с принудительной подачей воздуха:

Открыть кран к переносному запальнику и зажечь выходящий из запальника газ;

При устойчивой работе запальника внести его в топку к устью включаемой основной горелки;

Закрыть кран на трубопроводе безопасности;

Открыть первую по ходу газа запорную арматуру перед горелкой, а затем медленно приоткрыть вторую по ходу газа запорную арматуру, пуская газ в горелку;

После воспламенения газа немного увеличить его подачу, делая пламя устойчивым;

Приоткрыть воздушную заслонку;

Увеличивая подачу газа, затем воздуха, при контроле разрежения в топке, вывести работу горелки на минимальный режим согласно режимной карте;

Вынуть запальник из топки и закрыть перед ним кран;

Аналогичным образом ввести в работу остальные горелки.

Растопка газоиспользующей установки производится в течение времени, предусмотренного инструкцией.

Защита и автоматика регулирования вводятся в работу согласно инструкции.

Сведения о выполненных работах заносятся в журнал.

Розжиг инжекционных горелок производится аналогично, а т.к. вентилятор отсутствует, то вентиляция топки производится без вентилятора. После воспламенения газа открыть воздушную шайбу,

отрегулировать разрежение в топке и, увеличивая подачу газа, при контроле разрежения в топке, вывести работу горелки на минимальный режим согласно режимной карте.

Розжиг горелок с помощью ЗЗУ:

Повернуть ключ управления газоиспользующей установкой в положение «Розжиг». При этом срабатывает ЗЗУ: включается реле времени, открывается газовый электромагнитный клапан (ПЗК) запальника, включается устройство зажигания (при погасании пламени запальника электрод контроля пламени ЗЗУ дает импульс на отклонение высоковольтного трансформатора);

Если пламя запальника устойчивое, закрыть кран газопровода безопасности и полностью открыть запорную арматуру перед основной горелкой.

Действия персонала при авариях (инцидентах) на горелках

При отрыве, проскоке или погасании пламени при розжиге или в процессе регулирования, необходимо:

· немедленно прекратить подачу газа на эту горелку (горелки) и запальное устройство;

· провентилировать топку и газоходы не менее 10 минут;

· выяснить причину неполадок;

· доложить ответственному лицу;

· после устранения причин неполадок и проверки герметичности затвора запорной арматуры перед горелкой, по указанию ответственного лица по инструкции произвести повторный розжиг.

Пуск в работу ГРП (ГРУ)и розжиг первой горелки

а. Пуск в работу ГРП выполняется согласно производственной инструкции.

б. Пуск в работу газоиспользующей установки выполняется согласно производственной инструкции.

в. До розжига первой горелки на продувочном газопроводе должен быть открыт кран.

Работы выполняемыепри выводе газоиспользующей установкив резерв

Остановка (см. рис. 96) газоиспользующегооборудования во всех случаях, кроме аварийного, производится по письменному указанию технического руководителя, согласно производственной инструкции. При необходимости проводится инструктаж персонала.

Порядок выполнения работ:

Перевести режим работы горелок установки на минимальный, согласно режимной карте;

Зафиксировать в открытом положении ПЗК защиты;

- для горелки с принудительной по дачей воздуха закрыть воздушную заслонку перед горелкой, а затем вторую по ходу газа запорную арматуру на газопроводе к горелке, а для инжекционной горелки закрыть вторую по ходу газа запорную арматуру к горелке, а затем воздушную шайбу;

Проверить визуально прекращение горения;

Закрыть контрольную запорную арматуру и открыть кран на трубопроводе безопасности;

Аналогичным образом вывести из работы остальные горелки установки;

Закрыть запорную арматуру на отводе к установке;

Открыть продувочный трубопровод и трубопровод безопасности;

Закрыть ПЗК защиты;

Приоткрыть воздушную заслонку (шайбу) и 10 мин вентилировать топку;

Выключить вентилятор (при наличии) и дымосос, закрыть воздушную заслонку (шайбу) и шибер;

Сделать запись в журнале.

Остановку газифицированных котлов с автоматиками регулирования и безопасности и с комплексной автоматикой производят в соответствии с производственной инструкцией.

10.Техническое обслуживание и ремонт

ТР 870. Обязательные требования. установлены к сетям газораспределения на этапе эксплуатации (включая техническое обслуживание и текущие ремонты)

Для установления возможности эксплуатации газопроводов, зданий и сооружений и технологических устройств сетей газораспределения и газопотребления после сроков, указанных в проектной документации, должно проводиться их техническое диагностирование.

Предельные сроки дальнейшей эксплуатации объектов технического регулирования настоящего технического регламента должны устанавливаться по результатам технического диагностирования .

просмотров